МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Вычислительная и прикладная математика»

«СОГЛАСОВАНО»

«УТВЕРЖДАЮ»

Декан факультета

вычислительной техники

Д.А. Перепелкин

« 26» об 2020 г.

Проректор РОПиМД

А.В. Корячко

« 2020 г.

Заведующий кафедрой ВПМ

Г.В. Овечкин

2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.ДВ.02.02 «Программирование вычислительных систем реального времени»

Направление подготовки 09.03.04 «Программная инженерия»

Направленность (профиль) подготовки «Программная инженерия»

Уровень подготовки академический бакалавриат

Квалификация выпускника – бакалавр

Форма обучения – очная

Рязань 2020 г.

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требований федерального государственного образовательного стандарта высшего образования по направлению подготовки 09.03.04 «Программная инженерия», утвержденного приказом Министерства образования и науки Российской Федерации № 920 от 19.09.2017.

Разработчики

доцент кафедры «Вычислительная и прикладная математика» к.т.н., доцент

А.В. Благодаров

Программа рассмотрена и одобрена на заседании кафедры «Вычислительная и прикладная математика» 11 июня 2020 г., протокол № 11

Заведующий кафедрой «Вычислительная и прикладная математика» д.т.н., профессор

Г.В. Овечкин

1. ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель дисциплины: научить студентов создавать программное обеспечение для вычислительных систем реального времени на основе современных микроконтроллеров (МК).

Задачи дисциплины:

- познакомить студентов с основными приемами создания и отладки программ на языке Си для МК семейства 1986ВЕ9х с использованием операционной системы реального времени (ОСРВ) Keil RTOS2;
 - научить студентов работать с периферийными устройствами в составе МК.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина Б1.В.ДВ.02.02 «Программирование вычислительных систем реального времени» относится к дисциплинам части, формируемой участниками образовательных отношений, Блока 1 «Дисциплины (модули)» основной профессиональной образовательной программы бакалавриата направления 09.03.04 «Программная инженерия».

Дисциплина базируется на следующих дисциплинах: «Алгоритмические языки и программирование», «Информатика», «Основы электроники».

Для освоения дисциплины обучающийся должен:

знать:

- основы структурного программирования;
- основы электроники;

уметь:

- разрабатывать алгоритмы;
- писать программы с использованием высокоуровневых языков программирования;
 владеть:
- языком Си.

Результаты обучения, полученные при освоении дисциплины, необходимы при выполнении выпускной квалификационной работы.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО, ПООП (при наличии) по данному направлению подготовки, а также компетенций (при наличии), установленных университетом.

Профессиональные компетенции выпускников и индикаторы их достижения

Категория (группа) общепрофес- сиональных компетенций	Код и наименование общепрофессиональной компетенции	Код и наименование индикатора достижения общепрофессиональной компетенции
		Знать: основы моделирования и формальные методы конструирования ПО.
	ПК-10. Владеет навыками использования различных технологий разработки программного обеспечения.	Знать: современные технологии разработки

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Объем дисциплины в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 4 зачетные единицы (ЗЕ), 144 часа.

Объем дисциплины	Всего часов	Семестр 7
Общая трудоемкость дисциплины, в том числе:	144	144
1. Контактная работа обучающихся с препо-	50,35	50,35
давателем (всего), в том числе:		
Лекции	24	24
лабораторные работы	16	16
практические занятия	8	8
иная контактная работа (ИКР)	0,35	0,35
консультация	2	2
2. Самостоятельная работа	49,3	49,3
3. Курсовой проект	-	-
4. Контроль	44,35	44,35
Вид промежуточной аттестации		Экзамен

4.2 Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

№ п/п	Тема	Общая трудо- емкость, всего часов	06	гактная ра бучающих еподавате лекции	ся	Само- стоятельн ая работа обучаю- щихся
1	2	3	4	5	6	8
	ВСЕГО:	144	48	24	24	96
1	Понятие микроконтроллера	6	6	4	2	
2	Операционные системы реального времени (OCPB)	9	4	4		5
3	Средства синхронизации задач в ОСРВ	18	8	8		10
4	Программирование периферийных устройств МК с использованием ОСРВ	66	30	8	22	36
5	Экзамен и консультации	45				45

4.3 Содержание дисциплины

4.3.1 Лекционные занятия

№ п/п	Темы лекционных занятий	Трудоем- кость (час.)	Формируемые компетенции	Форма контроля
1	Понятие микроконтроллера	4	ПК-4, ПК-10	экзамен
2	Обзор основных подходов к построению	2	ПК-4, ПК-10	экзамен
	ПО для МК			
3	Построение ПО на основе конечных авто-	2	ПК-4, ПК-10	экзамен
	матов			
4	Понятие операционной системы реально-	2	ПК-4, ПК-10	экзамен
	го времени			
5	OCPB Keil RTOS2	6	ПК-4, ПК-10	экзамен
6	Обзор периферийных устройств в составе	4	ПК-4, ПК-10	экзамен
	МК семейства 1986ВЕ9х			
7	Программирование аналого-цифровых	2	ПК-4, ПК-10	экзамен
	преобразователей с использованием ОСРВ			
8	Использование широтно-импульсной мо-	2	ПК-4, ПК-10	экзамен
	дуляции совместно с ОСРВ			

4.3.2 Лабораторные занятия

№ п/п	Темы лабораторных занятий	Трудоем- кость (час.)	Формируемые компетенции	Форма контроля
1	Знакомство с отладочной платой для мик-	2	ПК-4, ПК-10	защита
	роконтроллера К1986BE92QI и средой			лаб. работы
	программирования Keil µVision			
2	Работа с портами ввода-вывода общего	2	ПК-4, ПК-10	защита
	назначения с использованием ОСРВ			лаб. работы
3	Работа с аналого-цифровым преобразова-	4	ПК-4, ПК-10	защита
	телем с использованием ОСРВ			лаб. работы
4	Работа с цифро-аналоговым преобразова-	4	ПК-4, ПК-10	защита
	телем с использованием ОСРВ			лаб. работы
5	Использование широтно-импульсной мо-	4	ПК-4, ПК-10	защита
	дуляции совместно с ОСРВ			лаб. работы
6	Использование аппаратных таймеров-	4	ПК-4, ПК-10	защита
	счетчиков для измерения частоты импуль-			лаб. работы
	сов совместно с ОСРВ			
7	Использование батарейного домена сов-	4	ПК-4, ПК-10	защита
	местно с ОСРВ			лаб. работы

4.3.3 Самостоятельная работа

№ п/п	Темы для самостоятельной подготовки Построение ПО на основе конечных авто-	Трудоем- кость (час.)	Формируемые компетенции ПК-4, ПК-10	Форма контроля экзамен
	матов			
2	OCPB Keil RTOS2	10	ПК-4, ПК-10	экзамен
3	Программирование портов ввода-вывода	6	ПК-4, ПК-10	экзамен
	общего назначения с использованием			
	ОСРВ			
4	Программирование аналого-цифровых	6	ПК-4, ПК-10	экзамен
	преобразователей с использованием ОСРВ			
5	Программирование цифро-аналоговых	6	ПК-4, ПК-10	экзамен
	преобразователей с использованием ОСРВ			
6	Использование широтно-импульсной мо-	6	ПК-4, ПК-10	экзамен
	дуляции совместно с ОСРВ			
7	Использование аппаратных таймеров-	6	ПК-4, ПК-10	экзамен
	счетчиков для измерения частоты импуль-			
	сов совместно с ОСРВ			

8	Программирование батарейного домена	6	ПК-4, ПК-10	экзамен
	совместно с ОСРВ			

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине представлен в виде оценочных материалов и приведен в Приложении к рабочей программе дисциплины (см. документ «Оценочные материалы по дисциплине «Программирование вычислительных систем реального времени»).

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- 6.1 Основная учебная литература
- 1. Благодаров А.В. Программирование микроконтроллеров семейства 1986ВЕ9х компании Миландр. М.: Горячая линия–Телеком, 2016. 230 с. (31 экз. в БФ РГРТУ)
- 2. Благодаров А.В., Владимиров Л.Л. Программирование микроконтроллеров [Электронный ресурс]: методическое пособие на основе отечественных микросхем семейства 1986ВЕ9х разработки и производства компании "Миландр", г. Зеленоград, 2016.— Режим доступа:
- https://edu.milandr.ru/upload/iblock/cbf/cbf9bd645aaf14a65f7d95fda68be0e8.pdf.
- 3. Спецификация микроконтроллеров серии 1986BE9x, K1986BE9x, K1986BE92QI, K1986BE92QC, K1986BE91H4. ТСКЯ.431296.001СП. (http://ic.milandr.ru/upload/iblock/62f/62f17032d6618f434146e71df d034761.pdf, дата просмотра 12.01.2019 или CD-диск к отладочному комплекту для микроконтроллера K1986BE92QI).
- 4. Мартин Т. Микроконтроллеры ARM7. Семейство LPC2000 компании Philips. Вводный курс. М.: Додэка XXI, 2006.– 240 с. (6 экз. в БФ РГРТУ)
- 5. Мартин, Т. Микроконтроллеры ARM7. Семейство LPC2000 компании Philips. Вводный курс [Электронный ресурс]: учеб. пособие Электрон. дан. Москва: ДМК Пресс, 2010.—240 с. Режим доступа: https://e.lanbook.com/book/60972. Загл. с экрана.
 - 6.2 Дополнительная учебная литература
- 6. Керниган Б.У., Ритчи Д.М. Язык программирования С, 2-е издание.: Пер. с англ. М.: Издательский дом «Вильямс», 2009. 304 с. (10 экз. в БФ РГРТУ)
- 7. Марченков, С.С. Конечные автоматы [Электронный ресурс] : учеб. пособие Электрон. дан. Москва : Физматлит, 2008. 56 с. Режим доступа: https://e.lanbook.com/book/59510. Загл. с экрана.
- 8. Микросхемы интегральные 1986BE91T, 1986BE92У, 1986BE93У. Технические условия. АЕЯР.431290.711ТУ (CD-диск к отладочному комплекту для микроконтроллера К1986BE92QI).
- 9. Руководство пользователя для OCPB Keil RTX (на англ. языке). RL-ARM User's Guide (http://www.keil.com/support/man/docs/rlarm/, дата просмотра 12.01.2019).
- 10. Угрюмов Е.П. Цифровая схемотехника.— 2-е изд. перераб. и дополн.— СПб.: БХВ-Санкт-Петербург, 2004. 728 с: ил. (20 экз. в БФ РГРТУ)
- 11. Хоровиц П., Хилл У. Искусство схемотехники. Изд. 5-е, перераб. М.: Мир, 1998.-698 с. (10 экз. в БФ РГРТУ)

- 12. Федосеева, Л.И. Основы теории конечных автоматов и формальных языков [Электронный ресурс]: учеб. пособие / Л.И. Федосеева, Р.М. Адилов, М.Н. Шмокин. Электрон. дан. Пенза: ПензГТУ, 2013. 136 с. Режим доступа: https://e.lanbook.com/book/62703. Загл. с экрана.
- 13. Энциклопедия АСУ ТП (http://www.bookasutp.ru/, дата просмотра 12.01.2019).
- 14. Getting started building applications with RL-ARM for ARM processor-based microcontrollers. (http://www.keil.com/product/brochures/rl-arm_gs.pdf, дата просмотра 12.01.2019).
 - 6.3 Нормативные правовые акты
 - 6.4 Периодические издания
 - 6.5 Методические указания к практическим занятиям/лабораторным занятиям
- 1. Благодаров А.В. Программирование микроконтроллеров семейства 1986ВЕ9х компании Миландр. М.: Горячая линия–Телеком, 2016. 230 с. (31 экз. в БФ РГРТУ)
- 6.6 Методические указания к курсовому проектированию (курсовой работе) и другим видам самостоятельной работы

Изучение дисциплины «Программирование вычислительных систем реального времени» проходит в течение одного семестра. Основные темы дисциплины осваиваются в ходе аудиторных занятий, однако важная роль отводится и самостоятельной работе студентов.

Самостоятельная работа включает в себя следующие этапы:

- изучение теоретического материала (работа над конспектом лекции);
- самостоятельное изучение дополнительных информационных ресурсов (доработка конспекта лекции);
- выполнение заданий текущего контроля успеваемости (подготовка к лабораторной работе);
 - итоговая аттестация по дисциплине (подготовка к экзамену).

<u>Работа над конспектом лекции:</u> лекции — основной источник информации по предмету, позволяющий не только изучить материал, но и получить представление о наличии других источников, сопоставить разные способы решения задач и практического применения получаемых знаний. Лекции предоставляют возможность «интерактивного» обучения, когда есть возможность задавать преподавателю вопросы и получать на них ответы. Поэтому рекомендуется в день, предшествующий очередной лекции, прочитать конспекты двух предшествующих лекций, обратив особое внимание на содержимое последней лекции.

<u>Подготовка к лабораторной работе:</u> состоит в теоретической подготовке (изучение конспекта лекций, методических указаний к данной лабораторной работе и дополнительной литературы) и выполнении индивидуального задания. Выполнение каждой из запланированных работ заканчивается предоставлением отчета. Требования к форме и содержанию отчета приведены в методических указаниях к лабораторным работам или определяются преподавателем на первом занятии.

Важным этапом является защита лабораторной работы. В процессе защиты студент отвечает на вопросы преподавателя, касающиеся теоретического материала, относящегося к данной работе, и проекта, реализующего его задание, комментирует полученные в ходе

работы результаты. При подготовке к защите лабораторной работы рекомендуется ознакомиться со списком вопросов по изучаемой теме и попытаться самостоятельно на них ответить, используя конспект лекций и рекомендуемую литературу.

Доработка конспекта лекции с применением учебника, методической литературы, дополнительной литературы, интернет-ресурсов: этот вид самостоятельной работы студентов особенно важен в том случае, когда одну и ту же задачу можно решать различными способами, а на лекции изложен только один из них. Кроме того, рабочая программа предполагает рассмотрение некоторых относительно несложных тем только во время самостоятельных занятий, без чтения лектором.

<u>Подготовка к экзамену:</u> основной вид подготовки — «свертывание» большого объема информации в компактный вид, а также тренировка в ее «развертывании» (примеры к теории, выведение одних закономерностей из других и т.д.). Надо также правильно распределить силы, не только готовясь к самому экзамену, но и позаботившись о допуске к нему (это хорошее посещение занятий, выполнение в назначенный срок лабораторных работ).

7. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1. Электронно-библиотечная система «Лань». Режим доступа: с любого компьютера РГРТУ без пароля. URL: https://e.lanbook.com/
- 2. Электронно-библиотечная система «IPRbooks». Режим доступа: с любого компьютера РГРТУ без пароля, из сети Интернет по паролю. URL: http://iprbookshop.ru/.
- 3. Электронная библиотека РГРТУ. Режим доступа: с любого компьютера РГРТУ без пароля.— URL: http://weblib.rrtu/ebs.
- 4. Национальный открытый университет ИНТУИТ. URL: $\underline{\texttt{http://www.intuit.ru/}}$
- 5. Миландр. Образование. Учебные материалы. URL: https://edu.milandr.ru/library/.

8. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

На каждом персональном компьютере (как для студентов, так и для преподавателя) в учебной лаборатории должно быть установлено следующее программное обеспечение:

- 1. Система программирования Keil μ Vision MDK-Lite версии 4.72 или выше (пробная бесплатная версия, https://www.keil.com/demo/eval/arm.htm , дата просмотра 10.01.2019).
- 2. Программа Windows OSCILL oscilloscope для осциллографа-приставки USB-Oscill (бесплатно, http://oscill.com/rus/software/winosc/winoscdownl.html, дата просмотра 10.01.2019).
- 3. Операционная система Microsoft Windows 7 (предоставлена в соответствии с академической программой Microsoft DreamSpark).
- 4. Драйверы для программатора-отладчика MT-Link и цифрового осциллографаприставки USB-Oscill (бесплатно, входят в комплект поставки).

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для проведения лекций и лабораторных работ необходима учебная лаборатория, оборудованная рабочими местами студентов (одно рабочее место на бригаду из двух студентов) и рабочим местом преподавателя.

Рабочее место студента должно содержать следующее оборудование:

- персональный компьютер;
- отладочный комплект для микроконтроллера К1986BE92QI производства фирмы АО «ПКК Миландр»

http://ic.milandr.ru/products/programmno otladochnye sredstva/o tladochnye komplekty/otladochnyy-komplekt-dlya-mikrokontrollera-k1986ve92qi/, дата προσмотра 09.01.2019);

• программатор-отладчик MT-Link производства фирмы «МТ-Систем»

(http://www.mt-system.ru/news/mt-sistem/otladochnye-platy-ot-kompanii-mt-sistem, дата просмотра 09.01.2019) или его аналог;

- цифровой осциллограф-приставка USB-Oscill (http://oscill.com/, дата просмотра 09.01.2019) или его аналог;
 - цифровой мультиметр М-838 или аналогичный;
 - модуль с четырьмя разноцветными светодиодами;
 - потенциометр 22 кОм с проводами для подключения к отладочной плате;
- лампа накаливания 3,5...6,3 В, 0,2...0,5 А с транзисторным ключом и проводами для подключения к отладочной плате.

Рабочее место преподавателя должно содержать:

- персональный компьютер;
- проектор или плазменную панель.