МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Телекоммуникаций и основ радиотехники»

 «СОГЛАСОВАНО»
 «УТВЕРЖДАЮ»

 Директор ИМиА
 Проректор РОПиМД

 / Бодров О.А.
 / Корячко А.В.

 «УЗ» О6 2020 г
 2020 г

 Заведующий кафедрой ТОР
 / Витязев В.В.

2020 r

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.04 «Проектирование систем ЦОС на ЦСП»

Направление подготовки 11.04.02 «Инфокоммуникационные технологии и системы связи»

Направленность (профиль) подготовки «Программно-конфигурируемые беспроводные инфокоммуникационные системы и сети»

Уровень подготовки Магистратура

Квалификация выпускника - магистр

Формы обучения - очная, очно-заочная

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требований федерального государственного образовательного стандарта высшего образования по направлению подготовки 11.04.02 «Инфокоммуникационные технологии и системы связи», утвержденного 22.09.2017.

Разработчик	
Доцент кафедры «Телекоммуникаций и основ радиотехники»	С.В. Витязев
Программа рассмотрена и одобрена на заседании кафедры «Тел радиотехники»	пекоммуникаций и основ
«»2020 г., протокол №	
Заведующий кафедрой «Телекоммуникаций и основ радиотехники»	В.В. Витязев

1. ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель изучения дисциплины: ознакомление студентов с принципами построения современных архитектур цифровых сигнальных процессоров; получение базовых представлений о функционировании сигнальных процессоров; получение навыков работы с цифровыми сигнальными процессорами с целью реализации на их основе систем обработки сигналов реального времени.

Задача освоения дисциплины — ознакомление студентов с архитектурой цифрового сигнального процессора TMS320C6678 фирмы Texas Instruments и принципами ее функционирования; получение студентами навыков разработки программного обеспечения цифровых сигнальных процессоров TMS320C6678 в отладочной среде Code Composer Studio v7; изучение назначения и способов применения операционной систем реального времени SYS/BIOS при разработке систем ЦОС на ЦСП; изучение принципов работы с многоядерными системами, включая понятия распределения задач по ядрам и организации взаимодействия между ядрами.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина Б1.В.04 (модуль) относится к вариативной части профессиональных дисциплин, блок № 1. Дисциплина (модуль) изучается в 1 семестре на 2 курсе. Дисциплина базируется на знаниях, полученных в ходе изучения следующих дисциплин: информатика, цифровая обработка сигналов, радиотехнические цепи и сигналы, основы теории связи, обработка сигналов на ЦСП, основы программирования ЦСП.

Студенты, обучающиеся по данному курсу, должны

знать: языки программирования (желательно, язык Си); основы теории цифровой обработки сигналов, включая цифровую фильтрацию; основы построения цифровых сигнальных процессоров и принципы работы с ними; принципы представления и передачи информации; принципы преобразования сигналов из аналоговой формы в цифровую; иностранный язык;

уметь: вести разработку программного обеспечения для цифровых сигнальных процессоров; переводить технические тексты с иностранного языка; записывать математические модели обработки сигналов;

владеть: навыками разработки программ обработки сигналов; исследования частотновременных свойств сигналов и систем; расчета параметров цифрового сигнала в зависимости от требований системы обработки.

Результаты обучения, полученные при освоении дисциплины, необходимы при выполнении выпускной квалификационной работы.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО, ПООП (при наличии) по данному направлению подготовки, а также компетенций (при наличии), установленных университетом.

3.1 Универсальные компетенции выпускников и индикаторы их достижения

Категория (группа) универсальных компетенций	Код и наименование универсальной компетенции	Код и наименование индикатора достижения универсальной компетенции
Разработка и реализация	УК-2. Способен управлять проектом	УК-2.1.
проектов		Знать: - принципы расчета параметров цифровой системы, с точки зрения обеспечения требуемого качества и вычислительной нагрузки на процессор УК-2.2. Уметь: проводить оценку быстродействия процессоров обработки сигналов, исходя из их архитектуры. УК-2.3. Владеть: - навыками оценки потенциальных возможностей ЦСП с учетом сложности задачи

3.2 Профессиональные компетенции выпускников и индикаторы их достижения

Задача ПД	Объект или область знания	Код и наименование профессиональной компетенции	Код и наименование индикатора достижения профессиональной компетенции
Тип	задач профессион	нальной деятельности: научно	о-исследовательский
Анализ научнотехнической проблемы на основе подбора и изучения литературных и патентных источников; математическое и компьютерное моделирование радиоэлектронных устройств и систем с целью оптимизации (улучшения) их параметров; разработка методов приема, передачи и обработки сигналов, обеспечивающих рост технических характеристик радиоэлектронной аппаратуры;	Программно- конфигурируем ые беспроводные инфокоммуник ационные системы и сети	ПК-2. Способен самостоятельно выполнять экспериментальные исследования для решения научно-исследовательских и производственных задач с использованием современной аппаратуры и методов исследования	ПК-2.1. Знает принципы построения процессоров обработки сигналов; принципы оптимизации программного обеспечения при реализации на современных процессорах ПК-2.2. Умеет вести разработку программного обеспечения для многоядерных процессоров ПК-2.3. Владеет навыками работы в среде ССЅ с целью программирования ЦСП с использованием инструментариев отладки и оптимизации
проведение аппаратного макетирования и			

экспериментальных		
работ по проверке		
достижимости		
технических		
характеристик,		
планируемых при		
проектировании		
радиоэлектронной		
аппаратуры;		
контроль соответствия		
разрабатываемых		
проектов и		
технической		
документации		
стандартам,		
техническим условиям		
и другим нормативным		
документам		

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1 Объем дисциплины по семестрам (курсам) и видам занятий в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 4 зачетных единиц (ЗЕ), 144 часа.

Вид учебной работы	Всего часов
Аудиторные занятия (всего)	48
В том числе:	
Лекции	16
Практические занятия (ПЗ)	32
Самостоятельная работа обучающихся (всего)	36
В том числе:	
Курсовой проект	18
Другие виды самостоятельной работы	18
Контроль	60
Вид промежуточной аттестации (зачет, дифференцированный зачет, экзамен)	экзамен
Общая трудоемкость час	144
Зачетные Единицы Трудоемкости	4
Контактная работа (по учебным занятиям)	48

4.2 Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

Nº	Раздел дисциплины	Общая трудое мкость		Контактная работа обучающихся с преподавателем		
		, всего часов	всего	лекции	практичес кие занятия	работа обучаю щихся
	Всего	144	48	16	32	96
1	Введение. Характеристики ЦСП TMS320C6678	8	4	4	0	4
2	Архитектура ЦСП ТМS320C6678: вычислительные блоки и регистры. Система команд	18	14	4	10	4
3	Оптимизация программного обеспечения: оптимизация на уровне алгоритма; архитектуры одного ядра; операционной системы; многоядерной системы	22	16	4	12	6
4	Распараллеливание обработки сигнала в многоядерной системе	18	14	4	10	4
5	Курсовой проект	18				18
6	Экзамены и консультации	60				60

4.3 Содержание дисциплины

4.3.1 Лекционные занятия

№ п/п	Темы лекционных занятий	Трудоемкос ть (час.)	Формируемые компетенции	Форма контроля
1	Введение. Характеристики ЦСП TMS320C6678	4	УК-2, ПК-2	экзамен
2	Архитектура ЦСП TMS320C6678:	4	УК-2, ПК-2	экзамен
	вычислительные блоки и регистры. Система			
	команд			
3	Оптимизация программного обеспечения:	4	УК-2, ПК-2	экзамен
	оптимизация на уровне алгоритма; архитектуры			
	одного ядра; операционной системы;			
	многоядерной системы			
4	Распараллеливание обработки сигнала в	4	УК-2, ПК-2	экзамен
	многоядерной системе			

4.3.2 Практические занятия (семинары)

№ п/п	Темы лекционных занятий	Трудоемкос ть (час.)	Формируемые компетенции	Форма контроля
1	Архитектура ЦСП ТМS320C6678:	10	УК-2, ПК-2	экзамен
	вычислительные блоки и регистры. Система			
	команд			

2	Оптимизация программного обеспечения:	12	УК-2, ПК-2	экзамен
	оптимизация на уровне алгоритма; архитектуры			
	одного ядра; операционной системы;			
	многоядерной системы			
3	Распараллеливание обработки сигнала в	10	УК-2, ПК-2	экзамен
	многоядерной системе			

4.3.3 Самостоятельная работа

№	Темы лекционных занятий	Трудоемкос	Формируемые	Форма
п/п		ть (час.)	компетенции	контроля
1	Введение. Характеристики ЦСП TMS320C6678	4	УК-2, ПК-2	экзамен
2	Архитектура ЦСП TMS320C6678:	4	УК-2, ПК-2	экзамен
	вычислительные блоки и регистры. Система			
	команд			
3	Оптимизация программного обеспечения:	6	УК-2, ПК-2	экзамен
	оптимизация на уровне алгоритма; архитектуры			
	одного ядра; операционной системы;			
	многоядерной системы			
4	Распараллеливание обработки сигнала в	4	УК-2, ПК-2	экзамен
	многоядерной системе			
5	Курсовой проект	18	УК-2, ПК-2	защита

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Оценочные материалы приведены в приложении к рабочей программе дисциплины (см. документ «Оценочные материалы по дисциплине «Проектирование систем ЦОС на ЦСП»).

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1 Основная литература

- 1. Серия статей по многоядерным ЦСП в сети Интернет: https://www.habrahabr.ru/post/318762
 - 2. Документация на сайте производителя www.ti.com.
- 3. Витязев С.В. Цифровые процессоры обработки сигналов. Курс лекций. М.: Горячая линия Телеком, 2017. 100 с.
- 4. Указания к выполнению лабораторных работ по дисциплине "Обработка сигналов на ЦСП" в сети Интернет: http://www.dspa.ru/dsp.htm.

6.2 Дополнительная литература

- 1. Цифровые процессоры обработки сигналов TMS320C67x компании Texas Instruments: Учеб. пособие / В.В. Витязев, С.В. Витязев; Рязан. гос. радиотехн. универ. Рязань, 2007. 114 с.
- 2. Naim Dahnoun. Multicore DSP: From Algorithms to Real-time Implementation on the TMS320C66x SoC. Wiley. 696 pages. 2018.
- 3. Солонина А.И., Улахович Д.А., Яковлев Л.А. Алгоритмы и процессоры цифровой обработки сигналов. СПб.: БХВ-Петербург, 2001. 464 с.

- 4. С. Смит. Цифровая обработка сигналов. Практическое руководство для инженеров и научных работников: Пер. с англ. М.: Додэка-XXI, 2008. 720 с.
- 5. Donald S. Reay. Digital Signal Processing and Applications with the OMAP L138 eXperimenter. Wiley, 2012. 360 p.
- 6. Сперанский В.С. Сигнальные микропроцессоры и их применение в системах телекоммуникаций и электроники. М.: Горячая линия Телеком, 2008.

6.3 Методические указания к самостоятельной работе

Изучение дисциплины «Теория мобильной связи нового поколения» проходит в течение одного семестра. Основные темы дисциплины осваиваются в ходе аудиторных занятий, однако важная роль отводится и самостоятельной работе студентов.

Самостоятельная работа включает в себя следующие этапы:

- изучение теоретического материала (работа над конспектом лекции);
- самостоятельное изучение дополнительных информационных ресурсов (доработка конспекта лекции);
- выполнение заданий текущего контроля успеваемости (подготовка к практическому занятию);
- итоговая аттестация по дисциплине (подготовка к зачету).

<u>Работа над конспектом лекции:</u> лекции — основной источник информации по предмету, позволяющий не только изучить материал, но и получить представление о наличии других источников, сопоставить разные способы решения задач и практического применения получаемых знаний. Лекции предоставляют возможность «интерактивного» обучения, когда есть возможность задавать преподавателю вопросы и получать на них ответы. Поэтому рекомендуется в день, предшествующий очередной лекции, прочитать конспекты двух предшествующих лекций, обратив особое внимание на содержимое последней лекции.

<u>Подготовка к практическому занятию:</u> состоит в теоретической подготовке (изучение конспекта лекций и дополнительной литературы) и выполнении практических заданий (решение задач, ответы на вопросы и т.д.). Во время самостоятельных занятий студенты выполняют задания, выданные им на предыдущем практическом занятии, готовятся к контрольным работам, выполняют задания типовых расчетов.

Доработка конспекта лекции с применением учебника, методической литературы, дополнительной литературы, интернет-ресурсов: этот вид самостоятельной работы студентов особенно важен в том случае, когда одну и ту же задачу можно решать различными способами, а на лекции изложен только один из них. Кроме того, рабочая программа по дисциплине предполагает рассмотрение некоторых относительно несложных тем только во время самостоятельных занятий, без чтения лектором.

<u>Подготовка к экзамену:</u> основной вид подготовки — «свертывание» большого объема информации в компактный вид, а также тренировка в ее «развертывании» (примеры к теории, выведение одних закономерностей из других и т.д.).

7. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОН-НОЙ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1. Серия статей по многоядерным ЦСП в сети Интернет: https://www.habrahabr.ru/post/318762
- 2. Документация на сайте производителя www.ti.com

- 3. Указания к выполнению лабораторных работ по дисциплине "Обработка сигналов на ЦСП" в сети Интернет: http://www.dspa.ru/dsp.htm
- 4. Для работы студентов предоставляется среда программирования ЦСП ССS v5 с поддержкой режима симуляции процессора, доступная на сайте разработчика: http://www.ti.com

8. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. Операционная система Windows 7 Professional (DreamSpark Membership ID 700565238);
- 2. Adobe Reader (PlatformClients_PC_WWEULA-ru_RU-20110809-1357 бессрочно).
- 3. Kaspersky Endpoint Security (Коммерческая лицензия на 1000 компьютеров №2304-180222-115814-600-1595 с 25.02.2018 по 05.03.2019).
- 4. LibreOffice (Mozilla Public Licence 2.0 бессрочно).
- 5. MATLAB, Simulink, Communications Blockset (Transitioned), Communications System Toolbox, DSP System Toolbox, Filter Design Tool-box (Transitioned), Fixed-Point De-signer, Signal Processing Toolbox (Concurrent Perpetual Classroom №283300 с 06.10.2009 бессрочно).
- 6. Специализированное программное обеспечение среда разработки Code Composer Studio v7 фирмы Texas Instruments (свободная лицензия Technology Software Public Available (TSPA) бессрочно).

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для освоения дисциплины необходимы следующие материально-технические ресурсы:

- 1) аудитория для проведения лекционных и практических занятий, групповых и индивидуальных консультаций, текущего контроля, промежуточной аттестации, оборудованная маркерной (меловой) доской;
- 2) аудитория для самостоятельной работы, оснащенная индивидуальной компьютерной техникой с подключением к локальной вычислительной сети и сети Интернет.

Учебная аудитория для проведения занятий лекционного и семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, №423 ГУК.

80 мест, 1 мультимедиа проектор, 1 экран, 1 компьютер, специализированная мебель, доска.

Учебная аудитория для проведения лекционных занятий и лабораторных работ, №422 ГУК.

28 мест, 11 компьютеров с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду РГРТУ, 1 мультимедиа

проектор,	1 экран,	специализир	рованная	мебель,	доска,	стенды	для	проведения	лаборатор	ных
работ.										

Программа составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 11.04.02 Инфокоммуникационные технологии и системы связи.

Программу составил:			
к.т.н., доцент каф. ТОР			(Витязев С.В.)
Программа рассмотрена и	« <u> </u>	2020 г.	протокол №
одобрена на заседании			
кафедры ТОР			

ПРИЛОЖЕНИЕ

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Телекоммуникаций и основ радиотехники»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

Б1.В.04 «Проектирование систем ЦОС на ЦСП»

Направление подготовки 11.04.02 «Инфокоммуникационные технологии и системы связи»

Направленность (профиль) подготовки «Программно-конфигурируемые беспроводные инфокоммуникационные системы и сети»

Уровень подготовки Магистратура

Квалификация выпускника – магистр

Формы обучения – очная

Рязань 2020 г.

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях. При оценивании результатов освоения практических занятий и лабораторных работ применяется шкала оценки «зачтено — не зачтено». Количество лабораторных и практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Итоговый контроль по дисциплине осуществляется проведением экзамена.

Форма проведения экзамена — письменный ответ по утвержденным билетам, сформулированным с учетом содержания учебной дисциплины. В билет включается два теоретических вопроса. После выполнения письменной работы обучаемого производится ее оценка преподавателем и, при необходимости, проводится теоретическая беседа с обучаемым для уточнения итоговой оценки.

Паспорт фонда оценочных средств по дисциплине

No	Контролируемые разделы (темы)	Код контроли-	
п/п	дисциплины (результаты по разде-	руемой компе-	
	лам)	тенции (или ее	ночного ме-
		части)	роприятия
1	2	3	4
1	Введение. Характеристики ЦСП	УК-2, ПК-2	экзамен
	TMS320C6678		
2	Архитектура ЦСП TMS320C6678: вычисли-	УК-2, ПК-2	экзамен
	тельные блоки и регистры. Система команд		
3	Оптимизация программного обеспечения:	УК-2, ПК-2	экзамен
	оптимизация на уровне алгоритма; архитек-		
	туры одного ядра; операционной системы;		
	многоядерной системы		
4	Распараллеливание обработки сигнала в	УК-2, ПК-2	экзамен
	многоядерной системе		

Критерии оценивания компетенций (результатов)

- 1) Уровень усвоения материала, предусмотренного программой.
- 2) Умение анализировать материал, устанавливать причинноследственные связи.
- 3) Качество ответа на вопросы: полнота, аргументированность, убежденность, логичность.
- 4) Содержательная сторона и качество материалов, приведенных в отчетах студента по лабораторным работам, практическим занятиям.
 - 5) Использование дополнительной литературы при подготовке ответов.

Уровень освоения и сформированности знаний, умений и навыков по дисциплине оценивается в форме бальной отметки:

Оценки «Отлично» заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усво-ивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

Оценки «Хорошо» заслуживает студент, обнаруживший полное знание учебно-программного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к

их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

Оценки «Удовлетворительно» заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

Оценка «Неудовлетворительно» выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Вопросы к экзамену по дисциплине «Проектирование систем ЦОС на ЦСП»

- 1. Сигнал; обработка сигналов; цифровая обработка сигналов.
- 2. Определение цифрового сигнального процессора.
- 3. Понятие многоядерного сигнального процессора.
- 4. Основная математическая операция, лежащая в основе построения архитектур сигнальных процессоров.
- 5. Основные характеристики процессора TMS320C6678.
- 6. Основные блоки архитектуры цифрового сигнального процессора TMS320C6678.
- 7. Задачи блока .М в составе операционного ядра ЦСП TMS320C6678.
- 8. Максимальные вычислительные возможности блока .М.
- 9. Задачи блока .L в составе операционного ядра ЦСП ТМS320C6678.
- 10. Максимальные вычислительные возможности блока .L
- 11. Задачи блока .D в составе операционного ядра ЦСП TMS320C6678?.
- 12. Максимальные вычислительные возможности блока . D.

- 13. Какие задачи способен решать блок .S в составе операционного ядра ЦСП TMS320C6678? Каковы его максимальные вычислительные возможности?
- 14.Опишите состав регистровых файлов. Опишите возможности обмена данными между регистровыми файлами и вычислительными блоками.
- 15. Опишите возможности процессора по обмену данными между регистрами и памятью данных.
- 16. Поясните понятие оптимизации?
- 17. Какие критерии оптимизации используются при работе ЦСП?
- 18. Что означает оптимизация на уровне алгоритма?
- 19. Что означает оптимизация на уровне ядра? Приведите примеры.
- 20. Поясните суть программной конвейеризации при оптимизации циклов.
- 21. Поясните суть разворачивания циклов при их оптимизации.
- 22. Какие существуют расширения языка Си для оптимизации ПО для ЦСП?
- 23. Поясните, что такое обратная связь компилятора.
- 24. Поясните суть иерархической архитектуры построения памяти.
- 25.В чем состоит оптимизация работы процессора с точки зрения использования памяти?
- 26.Поясните понятие операционной системы реального времени. Какие основные задачи она решает?
- 27. Какие достоинства имеет операционная система SYS/BIOS как операционная система реального времени?
- 28. Назовите основные типы потоков, используемых в SYS/BIOS. Для каких целей они используются?
- 29.Опишите основные проблемы, с которыми сталкивается разработчик программного обеспечения при переходе от одноядерной к многоядерной системе?
- 30.О чем говорит закон Амдала?

- 31.В чем состоит задача использования инструментария OpenMP? Каковы его основные достоинства?
- 32. Для каких целей используется инструментарий IPC? В чем его достоинства и недостатки?
- 33. Каковы основные задачи решаемые контроллером Multicore Navigator?.
- 34. Какие задачи решает инструментарий OpenCL?
- 35.Поясните термины: платформа, устройство, модуль и элемент обработки, используемые в OprnCL.
- 36.Поясните термины: рабочая группа и экземпляр работы, используемые в OprnCL. Приведите примеры.
- 37. Какие особенности OpenCL имеет при реализации на ЦСП фирмы TI?

Составили

Доцент кафедры ТОР

С.В. Витязев

Заведующий кафедрой ТОР

В.В. Витязев