ПРИЛОЖЕНИЕ 1

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА

Кафедра радиотехнических систем

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине (модулю)

«Комплексирование РНС»

Направление подготовки
11.05.01 «Радиоэлектронные системы и комплексы»

Направленность (профиль) подготовки Радионавигационные системы и комплексы

Уровень подготовки

специалитет

Программа подготовки специалитет

Квалификация выпускника – инженер

Форма обучения – очная

Оценочные материалы по дисциплине "Комплексирование РНС" содержат совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися части основной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы по специальности 11.05.01 "Радиоэлектронные системы и комплексы" как в ходе проведения текущего контроля, так и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности предусмотренных ОПОП компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретённых обучающимися на лабораторных работах. При выполнении лабораторных работ применяется система оценки «зачтено – не зачтено». Количество лабораторных работ по каждому модулю определено учебным графиком.

Промежуточный контроль по дисциплине осуществляется проведением зачёта и экзамена. Форма проведения экзамена — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса. В процессе подготовки к устному ответу экзаменуемый может составить в письменном виде план ответа, включающий в себя определения, выводы формул, рисунки.

Паспорт оценочных материалов по дисциплине

№ п/п	Тема	Код контролируе мойкомпетен ции (или её части)	Вид, метод, форма оценочного мероприятия
1.	Введение	ПК-5.3	зачёт
2.	Применение фильтра Калмана в задачах комплексирования радионавигационной информации	ПК-5.3	зачёт
3.	Описание моделей ошибок БИНС	ПК-5.3	зачёт
4.	Схемы комплексирования БИНС и спутниковых РНС	ПК-5.3	зачёт

Шкала оценивания компетенций (результатов)

- 1) Уровень усвоения материала, предусмотренного программой.
- 2) Умение анализировать материал, устанавливать причинно-следственные связи.
- 3) Качество ответа на вопросы: полнота, аргументированность, убежденность, логичность.

- 4) Содержательная сторона и качество материалов, приведенных в отчетах студента по лабораторным работам, практическим занятиям.
 - 5) Использование дополнительной литературы при подготовке ответов.

Уровень освоения сформированности знаний, умений и навыков по дисциплине оценивается в форме бальной отметки:

«Отлично» заслуживает студент, имеющий всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

«Хорошо» заслуживает студент, обнаруживший полное знание учебно-программного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

«Удовлетворительно» заслуживает студент, обнаруживший знания основного учебнопрограммного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

«Неудовлетворительно» выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Оценка «зачтено» выставляется студенту, который прочно усвоил предусмотренный программный материал; правильно, аргументировано ответил на все вопросы, с приведением примеров; показал глубокие систематизированные знания, владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данного курса, других изучаемых предметов; без ошибок выполнил практическое задание.

Обязательным условием выставленной оценки является правильная речь в быстром или умеренном темпе. Дополнительным условием получения оценки «зачтено» могут стать хорошие успехи при выполнении самостоятельной и контрольной работы, систематическая активная работа на семинарских занятиях.

Оценка «не зачтено» выставляется студенту, который не справился с 50% вопросов и заданий билета, в ответах на другие вопросы допустил существенные ошибки. Не может ответить на дополнительные вопросы, предложенные преподавателем. Целостного представления о взаимосвязях, компонентах, этапах развития культуры у студента нет. Оценивается качество устной и письменной речи, как и при выставлении положительной оценки.

Перечень лабораторных работ и вопросов для контроля

№ работы	Название лабораторной работы и вопросы для контроля		
1	Моделирование алгоритмов работы БИНС в географической		
	системе координат		
	1. Что такое связанная система координат;		
	2. Взаимосвязь связанной и географической систем координат;		
	3. Ускорение Кориолиса;		
	4. Компенсация ускорения Кориолиса в ИНС;		
	5. Основное уравнений инерциальной навигации.		
2	Исследование функционирования бесплатформенной		
	гировертикали.		
	1. Назовите основные кинематические параметры;		
	2. Взаимосвязь кинематических параметров;		
	3. Кинематические уравнения;		
	4. Назначение магнетометров в бесплатформенной		
	гировертикали;		
	5. Что такое начальная выставка.		
3	Исследование выходного сигнала микромеханического		
	гироскопа.		
	1. Что измеряет гироскоп;		
	2. Как определяется вариация Аллана;		
	3. Взаимосвязь вариаций Аллана и спектральной плотности		
	мощности;		
	4. Что определяет наклон вариаций Аллана;		
	5. Нарисовать и объяснить вариации Аллана для		
	синусоидального сигнала, белого шума.		
4	.Исследование помехозащищенности спутниковых систем		
	навигации		
	1. Состав спутниковой радионавигационной системы (СРНС).		
	2. Сравните параметры систем ГЛОНАСС и GPS.		
	3. Методы решения навигационной задачи, используемые в СРНС.		
	4. Какие факторы определяют точность позиционирования?5. Назовите основные характеристики, используемого в лабораторной		
	работе оборудования.		
Графии: ручно пунка поборотории и добот осотрототруют росписании и дормония			

График выполнения лабораторных работ соответствует расписанию и размещен в лаборатории. Сроки выполнения контрольных работ устанавливаются преподавателем и доводятся до сведения студентов в первые две недели семестра.

Вопросы для промежуточной аттестации (зачёт)

- 1. Общесистемные понятия и определения
- 2. Классификация радионавигационных систем
- 3. Методы определения местоположения в РНС.

- 4. Метод счисления пути.
- 6. Позиционные методы определения местоположения
- 7. Методы измерения угловых координат
- 8. Озорно-сравнительный метод определения местоположения
- 9. Погрешность определения местоположения позиционными методами
- 10. Уравнение дальности действия РНС.
- 11. РСБН. Назначение, классификация.
- 12. РСБН. Канал дальности. Принципы функционирования.
- 13. РСБН. Канал азимута. Импульсный метод измерения азимута.
- 14. РСБН. Канал азимута. Фазовый метод измерения азимута.
- 15. Кинематический параметры ориентации объекта. Углы Эйлера-Крылова.
- 16. Кинематический параметры ориентации объекта. Матрица направляющих косинусов.
- 17. Кинематический параметры ориентации объекта. Параметры Родриго-Гамильтона.
- 19. Взаимосвязь кинематических параметров.
- 20. Кинематические уравнения для углов Эйлера-Крылова.
- 21. Кинематические уравнения для матрицы направляющих косинусов.
- 22. Кинематические уравнения для параметров Родриго-Гамильтона.
- 23. Классификация инерциальных систем.
- 24. Системы координат, используемые в системах инерциальной навигации
- 25. Основное уравнение инерциальной навигации.
- 26. Чувствительные элементы инерциальных систем навигации.
- 27. Системы координат и стандарты времени, используемые в радионавигации.
- 28. Решение навигационной задачи.
- 29. Дальность действия СРНС.
- 30. Структура передаваемых сигналов СРНС ГЛОНАСС
- 31 Структура передаваемых сигналов СРНС GPS
- 32. Точность местоопределения спутниковыми системами навигации.
- 1. Линейная постановка задачи оценки параметров.
- 2. Методы наименьших квадратов. Взаимосвязь.
- 3. Точность оценки вектора состояния МНК.
- 4. Матрица измерений, переходная матрица. Примеры.
- 5. Инвариантная схема комплексирования РНС.
- 6. Неинвариантная схема комплексирования РНС.
- 7. Централизованная схема обработки информации в РНС.
- 8. Децентрализованная схема обработки информации в РНС.
- 9. Уравнения ИНС в географической системе координат.
- 10. Уравнения ИНС в прямоугольной вращающейся системе координат.
- 11. Начальная выставка ИНС.
- 12. Уравнения ошибок БИНС в географической системе координат.
- 13. Уравнения ошибок БИНС прямоугольной вращающейся системе координат.
- 14. Дискретный фильтра Калмана.

Контрольные вопросы для оценки сформированных компетенций

- 1. Метод наименьших квадратов.
- 2. Обобщённый метод наименьших квадратов.
- 3. Инвариантная схема комплексирования РНС.
- 4. Централизованная схема обработки информации в РНС.
- 5. Децентрализованная схема обработки информации в РНС.
- 6. Рекуррентная схема обработки информации в РНС.

- 7. Точности оценки параметра при помощи МНК, ОМНК.
- 8. Линейная постановка задачи оценки параметров.

Темы практических занятий

- 1. Расчёт погрешности пройденного пути за час полёта при использовании ДИСС в качестве датчика в методе счисления пути.
- 2. Исследование метода наименьших квадратов.
- 3. Исследование статистических характеристик случайных процессов.
- 4. Оценка коэффициентов полинома методом наименьших квадратов.
- 5. Исследование свойств дальномерного кода спутниковой радионавигационной системы.
- 6. Исследование взаимосвязи различных кинематических параметров.
- 7. Исследование северного канала БИНС.
- 8. Исследование восточного канала БИНС.

Составил доцент кафедры РТС к.т.н., доцент

В.А. Белокуров

Заведующий кафедрой РТС д.т.н., профессор

В.И. Кошелев