МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

КАФЕДРА СИСТЕМ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ ВЫЧИСЛИТЕЛЬНЫХ СРЕДСТВ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.06 «Моделирование электронно-вычислительных средств»

Направление подготовки

11.03.03 Конструирование и технология электронных средств

Направленность подготовки

Конструирование и технология электронно-вычислительных средств

Уровень подготовки - бакалавриат Квалификация (степень) выпускника - бакалавр Форма обучения - очная

Рязань, 2020 г.

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требований федерального государственного образовательного стандарта высшего образования по направлению подготовки 11.03.03 "Конструирование и технология электронных средств", утвержденного приказом № 928 от 19 сентября 2017 г.

доцент каф. САПР ВС
Дише Копейкин Ю.А.
(подпись) (Ф.И.О.)
Программа рассмотрена и одобрена на заседании кафедры САПР ВС
<i>31. 08</i> . 2020 г., протокол №
Ваведующий кафедрой
Систем автоматизированного проектирования вычислительных средств
М/при Корячко В.П.
(подпись) (Ф.И.О.)

Разработчики

1. ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины является изучение методов и моделей автоматизированного проектирования поддержки процесса конструирования и технологии электронно-вычислительных средств.

Задачи дисциплины:

- 1) сбор и анализ исходных данных для проектирования конструкций;
- 2) проектирование программных и аппаратных средств (систем, устройств, деталей, программ, баз данных) в соответствии с техническим заданием с использованием средств автоматизации проектирования;
- 3) проведение предварительного технико-экономического обоснования проектных расчетов при конструировании;
- 4) освоение и применение современных программно-методических комплексов исследования и автоматизированного проектирования объектов в проектно-технологической деятельности;
- 5) математическое моделирование процессов и объектов на базе стандартных пакетов автоматизированного проектирования и исследований;
- 6) проведение научно-исследовательских экспериментов по заданной методике и анализ результатов;
- 7) проведение научно-педагогической деятельности в части обучения персонала предприятий применению современных программно-методических комплексов исследования в конструкторско-технологической деятельности.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина реализуется в рамках части формируемой участниками образовательных отношений плана ОПОП по профилю "Конструирование и технология электронно-вычислительных средств" направления 11.03.03 Конструирование и технология электронных средств.

Дисциплина изучается по очной форме обучения на 4 курсе в 8 семестре.

Пререквизиты дисциплины: «Математика», «Оптимизация в проектировании ЭС», «САПР схем и конструкций ЭС» (программа бакалавриата).

Для освоения дисциплины обучающийся должен: *знать*:

- основные методы дифференцирования и интегрирования функций одной и нескольких переменных;
- принципы создания и управления проектами. *уметь:*
 - ставить и решать оптимизационные задачи в проектной деятельности;
- осуществлять постановку задач моделирования электронно-вычислительных средств и выполнять эксперименты по проверке их корректности и эффективности;

владеть:

- методами решения практических задач на основе теории графов;
- навыками алгоритмизации и программной реализации типовых задач моделирования ЭВС.

Взаимосвязь с другими дисциплинами. Курс «Моделирование электронновычислительных средств» содержательно и методологически взаимосвязан с другими курсами, такими как: «Распределенные информационные системы», «САПР схем и конструкций ЭС».

Программа курса ориентирована на возможность расширения и углубления знаний, умений и навыков бакалавра для успешной профессиональной деятельности.

Постреквизиты дисциплины. Компетенции, полученные в результате освоения дисциплины необходимы обучающемуся при изучении следующих дисциплин: «Преддипломная практика», «Выпускная квалификационная работа».

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО по данному направлению подготовки.

Профессиональные компетенции выпускников и индикаторы их достижения

	05 5	Код и наимено-	Код и наименование	Обоснование
Задача ПД	Объект или об-	вание професси-	индикатора достиже-	(ПС, анализ
	ласть знания	ональной ком-	ния профессиональной	опыта)
		петенции	компетенции	
Направле	нность (профиль), о	струирование и технологи	ия электронно-	
		вычислительных		
	Тип задач пј	•	еятельности: проектный	
Проектный	Автоматизирова	ПК-1 Способен	ИД — 1 _{ПК-1}	
	нное проектиро-	строить про-	Знать: методы модели-	
	вание и поддер-	стейшие физиче-	рования объектов и	
	жка процессов	ские и математи-	процессов в ЭВС для	
	конструирования	ческие модели	проведения эксперт-	
	и технологии	схем, конструк-	ных работ в области	
	электронно-	ций и технологи-	математики, используя	
	вычислительных	ческих процессов	стандартные пакеты	
	средств.	электронных	автоматизированного	
		средств, а также	проектирования и ис-	
		использовать	следования естествен-	
		стандартные	ных наук и математи-	
		программные	ки.	
		средства их ком-	$ИД - 2$ $_{\Pi K-1}$	
		пьютерного мо-	Уметь: создавать науч-	
		делирования.	ные методики модели-	
			рования объектов и	
			процессов ЭВС, ис-	
			пользуя стандартные	
			пакеты автоматизиро-	
			ванного проектирова-	
			ния и исследования	
			естественных наук и	
			математики.	

	ИД – 3 пк-1	
	Владеть: методами, не-	
	обходимыми для ре-	
	шения теоретических и	
	прикладных задач, ис-	
	пользуя для моделиро-	
	вания объектов и про-	
	цессов ЭВС, стандарт-	
	ные пакеты автомати-	
	зированного проектиро	
	вания и исследования	
	естественных наук и	
	математики.	

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1 Объем дисциплины по семестрам (курсам) и видам занятий в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 4 зачетные единицы (3E), 144 часа.

Вид учебной работы	Всего ча-	Семестры			
	сов	8			
Аудиторные занятия (всего)	40	40			
В том числе:					
Лекции	24	24			
Лабораторные работы (ЛР)	16	16			
Практические занятия (ПЗ)					
Семинары (С)					
Курсовой проект/(работа) (аудиторная нагрузка)					
Другие виды аудиторной работы					
Самостоятельная работа (всего)	68	68			
В том числе:					
Курсовой проект (работа) (самостоятельная работа)					
Расчетно-графические работы					
Расчетные задания					
Реферат					
Другие виды самостоятельной работы	68	68			
Контроль					
Вид промежуточной аттестации (зачет, дифференциро-	DOMOT	за-			
ванный зачет, экзамен)	зачет	чет			
Общая трудоемкость час	108	108			
Зачетные Единицы Трудоемкости	3	3			
Контактная работа (по учебным занятиям)	40	40			

4.2 Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

№	Тема	Общая	Контактная работа	Самостоятельная
п/п		трудое	обучающихся с	работа студентов
		мкость	преподавателем	

		всего часов	всего	лекции	практ	лабор	
1	Понятие математической модели. Классификация математических моделей.	12	2	2			10
2	Построение математических моделей. Методы исследования математических моделей.	20	10	2		8	10
3	Моделирование в задачах схе- мотехнического проектирова- ния.	22	10	6		4	12
4	Модели в задачах конструкторского проектирования ЭВС.	18	6	6			12
5	Модели технологических процессов.	16	4	4			12
6	Алгоритмы решения схемотехнических, конструкторских и технологических задач.	20	8	4		4	12
	Теоретический зачет Всего:	108	40	24		16	68

4.3 Содержание дисциплины 4.3.1 Лекционные занятия

№ π/π	Темы лекционных занятий	Трудоем- кость (час.)	Формируемые компетенции	Форма контроля
1	Понятие математической модели. Классификация математических моделей.	2	ПК-1	зачет
2	Построение математических моделей. Методы исследования математических моделей.	2	ПК-1	зачет
3	Моделирование принципиальных схем.	2	ПК-1	зачет
4	Компонентные модели принципиальных схем. Представление компонентных моделей в ЭВМ.	2	ПК-1	зачет
5	Топологические модели принципиальных схем. Представление топологических моделей в ЭВМ.	2	ПК-1	зачет
6,7	Модели конструкций ЭВС. Моделирование в задачах компоновки ЭВС.	4	ПК-1	зачет
8	Моделирование в задачах размещения и трассировки ЭВС.	2	ПК-1	зачет
9,10	Модели технологических процессов. Структурно-логические и функциональные математические модели технологических процессов.	4	ПК-1	зачет
11	Алгоритмы решения схемотехнических и конструкторских задач.	2	ПК-1	зачет
12	Алгоритмы решения технологических за-		ПК-1	зачет

лач.	2	
D.,	_	i

4.3.2 Лабораторные занятия

№ п/п	Наименование лабораторных работ	Трудоем- кость (час.)	Формиру- емые ком- петенции	Форма контроля
1.	Моделирование по принципу «черного	4	ПК-1	отчет, защита
	ящика» в Exsel.			
2.	Моделирование по принципу «черного	4	ПК-1	отчет, защита
	ящика» в MatCad.			
3.	Моделирование пассивных RC- схем в	4	ПК-1	отчет, защита
	Exsel и MatCad.			
4.	Исследование алгоритмов трассировки	4	ПК-1	отчет, защита
	межсоединений.			

4.3.3 Практические занятия

№ п/п	Наименование практических занятий	Трудоем- кость (час.)	Формиру- емые ком- петенции	Форма контроля
1.	Учебным планом не предусмотрены			

4.3.4 Самостоятельная работа

№ π/π	Тематика самостоятельной работы	Трудоем- кость (час.)	Формируе- мые ком- петенции	Форма контроля
1.	Понятие математической модели. Классификация математических моделей.	10	ПК-1	отчет, защита
2.	Построение математических моделей. Методы исследования математических моделей.	10	ПК-1	отчет, защита
3.	Моделирование в задачах схемотехнического проектирования.	12	ПК-1	отчет, защита
4.	Модели в задачах конструкторского проектирования ЭВС.	12	ПК-1	отчет, защита
5.	Модели технологических процессов.	12	ПК-1	отчет, защита
6.	Алгоритмы решения схемотехнических, конструкторских и технологических задач.	12	ПК-1	отчет, защита

4.3.5 Темы курсовых проектов/курсовых работ

Учебным планом не предусмотрены.

4.3.6 Темы рефератов

4.3.7 Темы расчетных заданий

Учебным планом не предусмотрены.

5. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Фонд оценочных средств приведен в приложении к рабочей программе дисциплины (см. документ «Оценочные материалы по дисциплине «Моделирование электронно-вычислительных средств»).

6. ПЕРЕЧЕНЬ ОСНОВНОЙ И ДОПОЛНИТЕЛЬНОЙ УЧЕБНОЙ ЛИТЕ-РАТУРЫ, НЕОБХОДИМОЙ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

6.1 Основная учебная литература:

- 1) Губарь Ю.В. Введение в математическое моделирование [Электронный ресурс] / Ю.В. Губарь. 2-е изд. Электрон. текстовые данные. М. : Интернет-Университет Информационных Технологий (ИНТУИТ), 2016. 178 с. 2227-8397. Электронно-Библиотечная Система "IPRbooks". Режим доступа: http://www.iprbookshop.ru/73662.html.
- 2) Нахман А.Д. Введение в стохастическое моделирование [Электронный ресурс]: учебное пособие / А.Д. Нахман, Ю.В. Родионов. Электрон. текстовые данные. Саратов: Ай Пи ЭрМедиа, 2018. 89 с. 978-5-4486-0168-2. Электронно-Библиотечная Система "IPRbooks" Режим доступа: http://www.iprbookshop.ru/70761.html.
- 3) Акамсина Н.В. Моделирование систем [Электронный ресурс] : учебное пособие / Н.В. Акамсина, А.В. Лемешкин, Ю.С. Сербулов. Электрон. текстовые данные. Воронеж: Воронежский государственный архитектурно-строительный университет, ЭБС АСВ, 2016. 67 с. 978-5-89040-581-4. Электронно-Библиотечная Система "IPRbooks". Режим доступа: http://www.iprbookshop.ru/59118.html.

6.2 Дополнительная учебная литература:

- 4) В.Н. Ашихмин [и др.]. Электрон. текстовые данные. М. : Логос, 2016. 440 с. 978-5-98704-637-1. Электронно-Библиотечная Система "IPRbooks". Режим доступа: http://www.iprbookshop.ru/66414.html.
- 5) Седова Н.А. Дискретная математика [Электронный ресурс] : учебное пособие / Н.А. Седова. Электрон. текстовые данные. Саратов: Ай Пи Эр Медиа, 2018. 67 с. 978-5-4486-0069-2. Электронно-Библиотечная Система "IPRbooks". Режим доступа: http://www.iprbookshop.ru/69316.html/
- 6). Системы автоматизированного проектирования. Учебное пособие для втузов в 9 кн. Под ред.: И. П. Норенкова. -Минск: Выш. шк., 1988.

6.3 Нормативные правовые акты

6.4 Периодические издания

6.5 Методические указания к практическим занятиям/лабораторным занятиям

Схемотехническое проектирование электронных средств: методические указания к практическим занятиям/ Рязан. гос. радиотехн. ун-т им. В.Ф. Уткина: сост.: Ю.А. Копейкин, В.П. Федоров. Рязань, 2019. 16 с.4 с

6.6 Методические указания к курсовому проектированию (курсовой работе) и другим видам самостоятельной работы

Изучение дисциплины «Моделирование электронно-вычислительных средств» проходит в течении 8 семестра. Основные темы дисциплины осваиваются в ходе аудиторных занятий, однако важная роль отводится и самостоятельной работе студентов.

Самостоятельная работа включает в себя следующие этапы:

- ■изучение теоретического материала (работа над конспектом лекции);
- самостоятельное изучение дополнительных информационных ресурсов (доработка конспекта лекции);
- выполнение заданий текущего контроля успеваемости (подготовка к практическому занятию);
- итоговая аттестация по дисциплине (подготовка к зачету и экзамену).

Работа над конспектом лекции: лекции — основной источник информации по предмету, позволяющий не только изучить материал, но и получить представление о наличии других источников, сопоставить разные способы решения задач и практического применения получаемых знаний. Лекции предоставляют возможность «интерактивного» обучения, когда есть возможность задавать преподавателю вопросы и получать на них ответы. Поэтому рекомендуется в день, предшествующий очередной лекции, прочитать конспекты двух предшествующих лекций, обратив особое внимание на содержимое последней лекции.

Подготовка к практическому занятию: состоит в теоретической подготовке (изучение конспекта лекций и дополнительной литературы) и выполнении практических заданий (решение задач, ответы на вопросы и т.д.). Во время самостоятельных занятий студенты выполняют задания, выданные им на предыдущем практическом занятии, готовятся к контрольным работам, выполняют задания типовых расчетов.

Доработка конспекта лекции с применением учебника, методической литературы, дополнительной литературы, интернет-ресурсов: этот вид самостоятельной работы студентов особенно важен в том случае, когда одну и ту же задачу можно решать различными способами, а на лекции изложен только один из них. Кроме того, рабочая программа по математике предполагает рассмотрение некоторых относительно несложных тем только во время самостоятельных занятий, без чтения лектором.

<u>Подготовка к зачету, экзамену:</u> основной вид подготовки — «свертывание» большого объема информации в компактный вид, а также тренировка в ее «развертывании» (примеры к теории, выведение одних закономерностей из других и т.д.). Надо также правильно распределить силы, не только готовясь к самому экзамену, но и позаботившись о допуске к нему (это хорошее посещение занятий, выполнение в назначенный срок типовых расчетов, активность на практических занятиях).

7. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУ-НИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1. Системе дистанционного обучения ФГБОУ ВО «РГРТУ», режим доступа. http://cdo.rsreu.ru/
- 2. Сайт Экспонента: http://exponenta.ru/
- 3. Единое окно доступа к образовательным ресурсам: http://window.edu.ru/
- 4. Интернет Университет Информационных Технологий: http://www.intuit.ru/
- 5. Сайт GeoGebra: https://www.geogebra.org

- 6. Электронно-библиотечная система «IPRbooks» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный, доступ из сети Интернет по паролю. URL: https://iprbookshop.ru/.
- 7. Электронно-библиотечная система издательства «Лань» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный, доступ из сети Интернет по паролю. URL: https://www.e.lanbook.com
- 8. Электронная библиотека РГРТУ [Электронный ресурс]. Режим доступа: из корпоративной сети РГРТУ по паролю. URL: http://elib.rsreu.ru
- 8. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ
- 1. Операционная система Windows XP (Microsoft Imagine, номер подписки 700102019, бессрочно);
- 2. Операционная система Windows XP (Microsoft Imagine, номер подписки ID 700565239, бессрочно);
- 3. Kaspersky Endpoint Security (Коммерческая лицензия на 1000 компьютеров №2304-180222-115814-600-1595, срок действия с 25.02.2018 по 05.03.2019);
- 4. LibreOffice;
- 5. MatCad 15 (лицензия на 10 раб. мест).

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Для освоении дисциплины необходимы:

- 1) для проведения лекционных занятий необходима аудитория с достаточным количеством посадочных мест, соответствующая необходимым противопожарным нормам и санитарно-гигиеническим требованиям;
- 2) для проведения практических занятий необходим класс персональных компьютеров (не менее 10) с инсталлированными операционными системами Microsoft Windows XP (или выше) и установленным программным обеспечением (п.5);
- 3) для проведения лекций и практических занятий аудитория должна быть оснащена проекционным оборудованием.

Программу составил:	
к.т.н., доцент каф. САПР ВС	(Копейкин Ю.А.)