МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Радиотехнических систем»

«СОГЛАСОВАНО»	«УТВЕРЖДАЮ»		
Декан факультета РТ	Прорект	ор РОПиМД	
/ <u>Холопов И.С.</u>		/ <u>Корячко А.В.</u>	
«» 20 г	« <u> </u> »	20 г	
Заведующий кафедрой РТС			
/ <u>Кошелев В.И.</u>			
«» 20 г			

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

<u>Б1.В.ДВ.02.01 «ОСНОВЫ РАДИОЭЛЕКТРОННОЙ БОРЬБЫ»</u>

Направление подготовки 11.03.01 Радиотехника

Направленность (профиль) подготовки Радиотехнические системы локации, навигации и телевидения

> Уровень подготовки бакалавриат

Квалификация выпускника – бакалавр

Формы обучения – заочная

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требований федерального государственного образовательного стандарта высшего образования по направлению подготовки (специальности) 11.03.01 Радиотехника, утвержденного приказом Минобрнауки № 931 от 19.09.2017 г.

Разработчики профессор кафедры «Радиотехнических систем» Кошелев Виталий Иванович	
(подпись)(Ф.И.О.)	_
Рассмотрена и утверждена на заседании кафедры «» №	2020 г., протокол
Заведующий кафедрой Радиотехнических систем Кошелев Виталий Иванович	
(полпись)(Ф.И.О.)	-

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы бакалавриата.

Цель изучения дисциплины: Получение базовых знаний по теоретическим основам и структурных схемах построения систем и устройств, предназначенных для радиоэлектронной борьбы в радиотехнических системах локации и навигации.

Перечень основных задач профессиональной деятельности выпускников (по типам)

Область	Типы задач	Радачи	Объекты
профессиональной	, ,	Задачи	профессиональной
деятельности (по		профессиональной	деятельности (или
Реестру Минтруда)	й деятельности	деятельности	области знания)
06 (06.0005) Связь,	научно -	Проведение исследований	Радиотехнические
информационные и	исследовательски	в целях	комплексы, системы,
коммуникационные	й	совершенствования	и устройства приема,
технологии		радиоэлектронных средств	передачи и обработки
		и радиоэлектронных	сигналов, методы и
		систем различного	средства их
		назначения.	моделирования,
		Анализ научно-	экспериментальной
		технической проблемы на	отработки.
		основе подбора и	
		изучения литературных и	
		патентных источников.	
		Математическое и	
		компьютерное	
		моделирование	
		радиоэлектронных	
		устройств и систем с	
		целью оптимизации	
		(улучшения) их	
		параметров Разработка	
		методов приема, передачи	
		и обработки сигналов,	
		обеспечивающих рост	
		технических	
		характеристик	
		радиоэлектронной	
		аппаратуры.	
		Проведение аппаратного	
		макетирования и	
		экспериментальных работ	
		по проверке	
		достижимости	
		технических	

характеристик, планируемых при проектировании радиоэлектронной аппаратуры. Контроль соответствия разрабатываемых проектов и технической документации. стандартам, техническим условиям и другим нормативным документам. проектный Разработка структурных и Радиотехнические функциональных схем комплексы, системы, радиоэлектронных систем и устройства приема, передачи и обработки и комплексов, ринципиальных схем сигналов, методы и устройств с средства их использованием средств моделирования, экспериментальной компьютерного отработки. проектирования, проведением проектных расчетов и техникоэкономическим обоснованием принимаемых решений. Проведение предварительного технико-экономического обоснования проектов радиотехнических устройств и систем. Сбор и анализ исходных данных для расчета и проектирования деталей, узлов и устройств радиотехнических систем. Расчет и проектирование деталей, узлов и устройств радиотехнических систем в соответствии с техническим заданием с использованием средств автоматизации

		проектирования.	
		Разработка проектной и	
		технической	
		документации,	
		оформление законченных	
		проектно-конструкторских	
		работ.	
		Контроль соответствия	
		разрабатываемых	
		проектов и технической	
		документации стандартам,	
		техническим условиям и	
		другим нормативным	
		документам.	_
25 (25.027) Ракетно-	•	Проведение исследований	
космическая		и испытаний бортовой	системы, комплексы и
промышленность	й	аппаратуры космических	устройства бортовых
		аппаратов (БАКА) и	космических систем.
		входящих в нее	
		функциональных узлов,	
		разработанных на основе	
		модернизируемых	
		технических решений.	
		Расчет электрических	
		режимов электронной	
		компонентной базы	
		БАКА.	
		Моделирование	
		функциональных узлов и	
		изделий БАКА.	
	проектный	Проведение расчетов для	Радиотехнические
		разработки	системы, комплексы и
		функциональных узлов	устройства бортовых
		бортовой аппаратуры	космических систем.
		космических аппаратов.	
		Макетирование и	
		моделирование	
		электронных узлов БАКА.	
		Анализ входных данных	
		для выполнения расчетов	
		при разработке	
		функциональных узлов	
		бортовой аппаратуры	
		космических аппаратов.	
		Проведение	

предварительного технико-экономического обоснования проектов радиотехнических устройств и систем; Сбор и анализ исходных данных для расчета и проектирования деталей, узлов и устройств радиотехнических систем; Расчет и проектирование деталей, узлов и устройств радиотехнических систем в соответствии с техническим заданием с использованием средств автоматизации проектирования; Разработка проектной и технической документации, Оформление законченных проектно-конструкторских работ; Контроль соответствия разрабатываемых проектов и технической документации стандартам, техническим условиям и другим нормативным документам.

2. Место дисциплины в структуре ОПОП

Данная дисциплина (модуль) реализуется в рамках части, формируемой участниками образовательных отношений, Блока 1 «Дисциплины (модули)» основной профессиональной образовательной программы (далее — образовательной программы) бакалавриата «Радиотехнические системы локации, навигации и телевидения» направления 11.03.01 Радиотехника и относится к дисциплинам по выбору студента.

Дисциплина (модуль) изучается на 4 курсе в 8 семестре.

Студенты, изучающие данную дисциплину должны предварительно освоить следующие дисциплины; Радиотехнические цепи и сигналы», «Метрология, стандартизация и сертификация», «Радиоавтоматика», «Устройства СВЧ и антенны», «Основы компьютерного моделирования и проектирования РЭС».

Дисциплина "Основы радиоэлектронной борьбы" подготавливает студентов к изучению дисциплин «Радиотехнические системы», «Проектирование РЛС» и «Средства защиты РЛС от помех».

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Профессиональные компетенции выпускников и индикаторы их достижения

профессионал	тыные компетенции	выпускников и инд	икаторы их достиже	кинз
			Код и	
		Код и	наименование	
Эатана ПП	Объект или	наименование	индикатора	Обоснование (ПС,
Задача ПД	область знания	профессионально	достижения	анализ опыта)
		й компетенции	профессионально	
			й компетенции	
Тип з	вадач профессиональ	ной деятельности: на	учно-исследователі	ьский
Анализ научно-	Радиотехнические	ПК-1. Способен	ПК-1.1. Умеет	06.005 Инженер-
технической	комплексы,	выполнять	строить	радиоэлектронщи
информации,	системы, и	математическое	физические и	к
отечественного и	устройства	моделирование	математические	
зарубежного	приема, передачи	объектов и	модели моделей,	25.027
опыта по	и обработки	процессов по	узлов,	Радиотехнические
тематике	сигналов, методы	типовым	блоков	системы,
исследования;	и средства их	методикам, в том	радиотехнически	комплексы и
Моделирование	моделирования,	числе с	х устройств и	устройства
объектов и	экспериментально	использованием	систем	бортовых
процессов, в том	й отработки.	стандартных	ПК-1.2. Владеет	космических
числе с		пакетов	навыками	систем.
использованием	Радиотехнические	прикладных	компьютерного	
стандартных	системы,	программ.	моделирования.	
пакетов	комплексы и			
прикладных	устройства			
программ;	бортовых			
Участие в	космических			
планировании и	систем.			
проведении				
экспериментов по				
заданной				
методике;				
Обработка				
результатов с				
применением				
современных				
информационных				
технологий и				
технических				
средств;				

Составление		
обзоров и отчетов		
по результатам		
проводимых		
исследований;		
Организация		
защиты объектов		
интеллектуальной		
собственности и		
результатов		
исследований и		
разработок.		

4. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины (модуля) составляет 5 зачетных единиц (ЗЕ), 180 часов.

Вид учебной работы (очное обучение)	Всего часов/ЗЕ	
1	2	
Общая трудоемкость дисциплины, в том числе:	180/5	
Контактная работа обучающихся с преподавателем	50,35	
(всего), в том числе:		
Лекции	24	
Лабораторные работы	16	
Практические занятия	8	
Консультации в семестре	2	
ИКР	0,35	
Самостоятельная работа обучающихся (всего), в том числе:	76	
Самостоятельные занятия	76	
Контроль	53,65	
Вид промежуточной аттестации	Экзамен	

5. Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

Раздел (тема)	Содержание
Основные термины и	Определение терминов "радиоэлектронный
определения, применяемые в	конфликт", "помехозащищенность",
теории радиоэлектронной борьбы	"радиоэлектронное подавление". Виды средств РЭБ и
	их классификация по различным критериям.

Математическая теория принятия	Основные критерии принятия решений,
решений	характеристики обнаружения сигналов на фоне
	узкополосных помех и белого шума.
Дальность действия РЭС	Определение максимальной дальности обнаружения
различного класса Виды и	сигналов РЭС активного, полуактивного и
параметры помех	пассивного типа, анализ влияния параметров РЭС на
радиолокационному	дальность обнаружения. Классификация помех
.обнаружению целей.	обнаружению целей и измерению их параметров.
Оптимизация параметров РФ и	Параметры пассивных помех, основные методы и
анализ эффективности подавления	схемы устройств защиты от пассивных помех,
ПП. Эффект слепых скоростей и	Понятие «слепой» дальности и «слепой» скорости.
методы устранения.	Методы устранения эффекта «слепых» дальностей и
	скоростей.
Дальность действия РЛС в	Параметры активных помех, основные методы и
условиях активных помех.	схемы устройств защиты от активных помех и
Методы защиты РЛС от активных	уводящих помех.
помех. Уводящие помехи и	
методы их селекции.	
Имитация спектральных	Методы создания имитирующих реальные цели
характеристик реальных целей	помех. Программные и физические имитаторы целей.
Стабилизация уровня ложных	Задача стабилизации (фиксирования) уровня ложных
тревог. Вычисление порога	тревог, оценка уровня шума во временной и
обнаружения на выходе БПФ	частотной области.
Методы создания помех	Алгоритмы работы радиовзрывателей, основные
радиовзрывателям.	методы борьбы с системами управления взрывом,
	методы преждевременного подрыва и
	предотвращения подрыва.
Виды помех системам передачи	Виды систем передачи информации и
информации и	радионавигационных систем и решаемые ими задачи.
радионавигационным системам.	Методы борьбы с помехами в задачах навигации.
Электромагнитное оружие	Принципы функционирования низкочастотного и
	высокочастотного электромагнитного оружия,
	методы защиты от электромагнитного оружия.

Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

Раздел дисциплины	Общая	Контактная	г работа		Самостоя
(модуля)	трудое	удое обучающихся		тельная	
	мкость,	с преподава	ателем		работа
	часы	Лекции	Лабораторн	Практически	обучающ
			ые работы	е занятия	ихся
1	2	3	4	5	6
Основные термины и	5	1	0	0	4
определения,					
применяемые в теории					
радиоэлектронной борьбы					

Математическая теория	14	2	0	0	9
принятия решений					
Дальность действия РЭС	26	4	4	2	10
различного класса Виды и					
параметры помех					
радиолокационному					
.обнаружению целей.					
Оптимизация параметров	12	2	0	2	8
РФ и анализ					
эффективности					
подавления ПП. Эффект					
слепых скоростей и					
методы устранения.					
Дальность действия РЛС	24	4	4	2	9
в условиях активных					
помех.					
Методы защиты РЛС от					
активных помех.					
Уводящие помехи и					
методы их селекции.					
Имитация спектральных	16	2	4	2	8
характеристик реальных					
целей					
Стабилизация уровня	12	2	0	0	5
ложных тревог.					
Вычисление порога					
обнаружения на выходе					
БПФ					
Методы создания помех	14	2	2	0	9
радиовзрывателям.					
Виды помех системам	13	3	2	0	8
передачи информации и					
радионавигационным					
системам.					
Электромагнитное	8	2	0	0	6
оружие					
Всего:	124	24	16	8	76

6. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

- 1. Бакулев П.А. Радиолокационные системы. М.: Радиотехника, 2015
- -420 с. (или издание 2007 г. 376 с. или издание первое 2004. -319 с.)
- 2. П.А. Бакулев, А.А. Сосновский Радионавигационные системы. М.: Радиотехника, 2011-272 с. (или издание первое 2005 г. -224 с.)

- 3. Кошелев, В.Н. Горкин. Исследование цифровых фильтров систем первичной обработки радиолокационных сигналов, 2006. 20 с. (№ 3761).
- 4. Сборник задач по курсу «Радионавигационные системы» /Под ред. П.А. Бакулева, А.А. Сосновского. Изд. Радиотехника, 2011. 112 с.
- 5. Кошелев В.И. Основы теории радиосистем и комплексов радиоэлектронной борьбы. Учебное пособие. Рязань, РГРТУ. 2016. 80 с.
- 6. Кошелев В.И., Холопов И.С. Радиотехнические системы. Методические указания к практическим занятиям. Рязань, РГРТУ. 2015. 40 с. (№4277).

7. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине (модулю)

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине представлен в виде оценочных материалов и приведен в Приложении.

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

а) основная

- 1. Бакулев П.А. Радиолокационные системы.— М.: Радиотехника, 2015 420 с. (или издание 2007 г. 376 с. или издание первое 2004.— 319 с.)
- 2. П.А. Бакулев, А.А. Сосновский Радиолокационные системы. Лабораторный практикум. Учебное пособие для вузов, Радиотехника, Москва, 2007. 160 с.
- 3. Сборник задач по курсу «Радиолокационные системы» /Под ред. П.А. Бакулева, А.А. Сосновского. Изд. Радиотехника, 2007. 208 с.
- 4. П.А. Бакулев, А.А. Сосновский Радионавигационные системы. М.: Радиотехника, 2011-272 с. (или издание первое 2005 г. -224 с.)
- 5. В.И. Кошелев, В.Н. Горкин. Исследование цифровых фильтров систем первичной обработки радиолокационных сигналов, 2006. 20 с. (№ 3761).
- 6. Сборник задач по курсу «Радионавигационные системы» /Под ред. П.А. Бакулева, А.А. Сосновского. Изд. Радиотехника, 2011. 112 с.
- 7. Кошелев В.И. Основы теории радиосистем и комплексов радиоэлектронной борьбы. Учебное пособие. Рязань, РГРТУ. 2016. 80 с.
- 8. Кошелев В.И., Холопов И.С. Радиотехнические системы. Методические указания к практическим занятиям. Рязань, РГРТУ. 2015. 40 с. (№4277).

б) дополнительная

- 1. Исследование помехозащищенности спутниковых систем навигации. Методические указания к лабораторной работе. /В.И. Кошелев. Рязань, 2010. 16, (№4333).
- 2. Исследование дальности действия радиолокационных систем в условиях радиоэлектронной борьбы. Методические указания к лабораторной работе. /В.И. Кошелев, И.С. Холопов. Рязань, 2009. 16. (№4277).
- 3. Расчет системных параметров бортовых наземных импульсных радиолокационных комплексов обнаружения. Методические указания к лабораторной работе. /И.С. Холопов Рязань, 2012. 16, (№4570).

- 4. В.И. Кошелев, В.А. Белокуров Методы стабилизации уровня ложной тревоги при обнаружении радиолокационных сигналов. Учебное пособие. Рязань, 2008. 48.
- 5. В.И. Кошелев, Ю.В. Уполовнев. Исследование функционирования глобальной радионавигационной системы и точности определения координат. Методические указания к лабораторной работе. Рязань, 2007. − 16, (№4002).

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для изучения дисциплины

Обучающимся предоставлена возможность индивидуального доступа к следующим электронно-библиотечным системам:

Электронно-библиотечная система «Лань», режим доступа — с любого компьютера РГРТУ без пароля. — URL: https://e.lanbook.com/

Электронно-библиотечная система «IPRbooks», режим доступа — с любого компьютера РГРТУ без пароля, из сети интернет по паролю. — URL: https://iprbookshop.ru/.

10. Методические указания для обучающихся по освоению дисциплины

Работа студента на лекции

На лекции студент должен обязан конспект, отмечая в нем принципиально важные определения, формулы, структурные схемы, выводы, результаты анализа основных положений.

Рекомендуется в конспекте использовать нумерацию разделов, глав, формул. Рекомендуется каждый раздел завершать изложением своего понимания, комментарием. Непонятные места можно сопровождать вопросами, с которыми следует обратиться к преподавателю после лекции.

Подготовка к практическим занятиям

Практические занятия связаны с решением задач и закрепляют освоение лекционного материала В процессе решения задач студенты расширяют и углубляют знания, полученные из лекционного курса и учебников, учатся глубже понимать физические законы, лежащие в основе радиотехнических систем и основные формулы. В процессе решения задач вырабатываются навыки вычислений, работы со справочной литературой.

В часы самостоятельной работы студенты решают задачи, которыми им предложены по основным темам дисциплины.

- 1) внимательно прочитать условие задачи;
- 2) посмотреть, все ли термины в условиях задачи известны и понятны (если что-то неясно, следует обратиться к учебнику, просмотреть решения предыдущих задач, посоветоваться с преподавателем);
- 3) записать в сокращенном виде условие задачи и формулы, связывающие соответствующие величины;
 - 4) сделать чертёж, если это необходимо;
 - 5) провести необходимые расчеты;

- б) проанализировать полученный ответ, выяснить соответствие размерности полученных физических величин;
- 7) контрольные работы с решение задач сдаются по графику на проверку, при условии выполнения контрольных работ студент допускается к сдаче экзамена.

Подготовка к лабораторным работам

Главные задачи лабораторного практикума следующие:

- 1) экспериментальная проверка физических законов;
- 2) освоение методики измерений и приобретение навыков эксперимента;
- 3) освоение навыков работы с радиотехническими приборами;
- 4) приобретения умения обработки результатов эксперимента.

Прежде чем приступить к выполнению лабораторной работы необходимо внимательно ознакомится с методическими указаниями к выполнению лабораторной работы.

Основная часть времени, выделенная на выполнение лабораторной работы, затрачивается на самостоятельную подготовку. Этапу выполнения работы предшествует «допуск к работе». Допускаясь к лабораторной работе, каждый студент должен представить преподавателю «заготовку» отчета, содержащую: оформленный титульный лист (по образцу, имеющемуся в лаборатории), цель работы, приборы и принадлежности, эскиз экспериментального макета, основные закономерности изучаемого явления и расчетные формулы. Чтобы сэкономить время при выполнении работы, рекомендуется заранее подготовить и таблицу для записи результатов измерений. Для этого студенту необходимо разобраться в устройстве установки или макета, порядке проведения экспериментов, а также иметь представление о том, какие расчеты необходимо будет провести.

Выполнение каждой из запланированных работ заканчивается предоставлением отчета. После выполнения лабораторной работы необходимо согласовать полученные результаты с преподавателем. Заключительным этапом является защита лабораторной работы. В процессе защиты студент отвечает на вопросы преподавателя, касающиеся теории изучаемого явления, комментирует полученные в ходе работы результаты.

При подготовке к защите лабораторной работы рекомендуется пользоваться дополнительной литературой, список которой приведен в методическом описании, а также конспектом лекций.

Подготовка к сдаче экзамена

Экзамен – форма промежуточной проверки знаний, умений, навыков, степени освоения дисциплины.

Главная задача экзамена состоит в том, чтобы у студента из отдельных сведений и деталей составилось представление об общем содержании соответствующей дисциплины, стала понятной методика предмета, его система. Готовясь к экзамену, студент приводит в систему знания, полученные на лекциях, в лабораториях, на практических занятиях, разбирается в том, что осталось непонятным, и тогда изучаемая им дисциплина может быть воспринята в полном объеме.

Студенту на экзамене нужно не только знать сведения из тех или иных

разделов дисциплины, но и владеть ими практически.

На экзамене оцениваются:

- 1) понимание и степень усвоения теории;
- 2) методическая подготовка;
- 3) знание фактического материала;
- 4) знакомство с основной и дополнительно литературой, а также с современными публикациями по данному курсу;
- 5) умение приложить теорию к практике, решать задачи, правильно проводить расчеты и т. д.;
 - б) знакомство с историей предмета экзамена;
- 7) логика, структура и стиль ответа, умение защищать выдвигаемые положения.

Но значение экзаменов не ограничивается проверкой знаний.

Подготовка к экзамену не должна ограничиваться прочтением лекционных записей, даже, если они выполнены подробно и аккуратно. Следует избегать механического заучивания. Более надежный и целесообразный путь — это систематизация материала при вдумчивом изучении, понимание формулировок, установлении внутрипредметных связей.

Перед экзаменом назначается консультация. Цель ее — дать ответы на вопросы, возникшие в ходе самостоятельной подготовки. Здесь студент имеет полную возможность получить ответ на все неясные ему вопросы. А для этого он должен проработать до консультации весь курс. Лектор на консультации обращает внимание на те разделы, по которым на предыдущих экзаменах ответы были неудовлетворительными, а также фиксирует внимание на наиболее трудных разделах курса. На непосредственную подготовку к экзамену обычно дается три - пять дней. Этого времени достаточно только для углубления, расширения и систематизации знаний, на устранение пробелов в знании отдельных вопросов, для определения объема ответов на каждый из вопросов программы.

Подготовку к экзаменам следует начинать с общего планирования подготовки, с определения объема материала, подлежащего проработке. Необходимо внимательно сверить свои конспекты с программой, чтобы убедиться, все ли разделы отражены в лекциях. Отсутствующие темы законспектировать по учебнику. Более подробное планирование на ближайшие дни будет первым этапом подготовки к очередному экзамену. Второй этап предусматривает системное изучение материала по данному предмету с обязательной записью всех выкладок, выводов, формул. На третьем этапе - этапе закрепления — полезно чередовать углубленное повторение особенно сложных вопросов с беглым повторением всего материала.

- 11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости)
- 1) Программное средство Clutter, разработанное на кафедре РТС и предназначенное для исследования влияния на дальность действия РЛС как

- пассивных, так и активных помех и комплексного их действия. Пакет установлен на компьютерах в лаборатории «Радиолокация, радионавигация и радиоэлектронная борьба» (417 к.2).
- 2) Программное средство Nemezida, разработанное на кафедре РТС и предназначенное для исследования влияния постановщиков активных помех на спутниковые радионавигационные системы. Пакет установлен на компьютерах в лаборатории«Радиолокация, радионавигация и радиоэлектронная борьба» (417 к.2).
- 3) Пакет MatCad, используемый для расчетов при решении задач. Срочнобесплатную версию можно скачать по адресу: https://www.syssoft.ru/PTC/Mathcad-Lokalnaya-versiya/
- 4) Программно-алгоритмическое средство «Стрела» (ARROW), разработанное на кафедре радиотехнических систем. Пакет установлен на компьютерах в лаборатории «Радиолокация, радионавигация и радиоэлектронная борьба» (417 к.2).

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для лекционных занятий используются лекционные аудитории кафедры «Радиотехнические системы» РГРТУ, оборудованные интерактивной доской для представления учебного материала.

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензированного программного обеспечения. Реквизиты подтверждающего документа
Учебная аудитория для проведения занятий лекционного и семинарского типа, групповых и индивидуальных консультаций, текущего	б 56 мест, 1 интерактивный комплект, 1 компьютер, специализированная мебель, доска	1. Операционная система Windows 7 Professional (DreamSpark Membership ID 700565238, бессрочно) Кроме того разработки кафедры РТС: Программное обеспечение "ARROW" Авторы Кошелев, Горкин В.Н. Свидетельство о регистрации фонда ОФАП 2002.— № 50200200364. и 2002.— № 50200200365. Программное обеспечение Clutter авторы Штрунова Е.С., Холопов И.С. роспатент
контроля и промежуточной аттестации, №525		№2013610095 от 09.01.2013г. 2. Kaspersky Endpoint Security Коммерческая лицензия на 1000 компьютеров №2304-180222-115814-600-1595, срок действия с 25.02.2018 по 05.03.2019)

Учебная лаборатория, оснащенная лабораторным оборудованием, №417. Для проведения лабораторных и самостоятельных работ	Учебно- лабораторные макеты: генераторы, осциллографы, радиовысотомер, отладочные комплекты, 1 мультимедийный проектор, экран, доска, специализированная мебель. Компьютерная техника с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационнообразовательную среду.	1. Операционная система Windows 7 Professional (DreamSpark Membership ID 700565238, бессрочно) Кроме того: разработки кафедры РТС Программное обеспечение "ARROW" Авторы Кошелев, Горкин В.Н. Свидетельство о регистрации фонда ОФАП 2002.— № 50200200364. и 2002.— № 50200200365. Программное обеспечение Clutter авторы Штрунова Е.С., Холопов И.С. роспатент №2013610095 от 09.01.2013г. Программное средство Nemezida 2. Каѕрегѕку Endpoint Security Коммерческая лицензия на 1000 компьютеров №2304-180222- 115814-600-1595, срок действия с 25.02.2018 по 05.03.2019) 3. Лицензия на ПО РКG-7517-LN Mathcad University Classroom Perpetual Sales Order Number (SON) — 2469998, Service Contract Number (SCN) — 8A1365510 — с 3.02.2008 — бессрочно
---	---	--

Программу составил:			
д.т.н., профессор каф. РТС			(Кошелев В.И.)
Программа рассмотрена и одобрена на заседании кафедры РТС	«»	2020 г	(протокол №)