ФГБОУ ВО «Рязанский государственный радиотехнический университет им. В.Ф.Уткина»

## КРЮКОВ АЛЕКСАНДР НИКОЛАЕВИЧ

## ИССЛЕДОВАНИЕ ТЕРМОПРЕОБРАЗОВАТЕЛЯ

Учебное электронное издание комплексного распространения

Рязань РГРТУ 2021

© Все права защищены

## УДК 621.311.6: 621.396.6 ББК 31.264.5

#### Энергосберегающие технологии

Для студентов специальностей 11.03.01 Радиотехника, 11.05.01 Радиоэлектронные системы и комплексы

В ходе занятия формируются компетенции ПК-2:

Способен реализовать программы экспериментальных исследований, включая выбор технических средств и обработку результатов.

Способен организовывать и проводить экспериментальные исследования с целью оценки качества предоставляемых услуг, соответствия требованиям технических регламентов, международных и национальных стандартов и иных нормативных документов.

Способен разрабатывать структурные и функциональные схемы радиоэлектронных систем и комплексов, а также принципиальные схемы радиоэлектронных устройств с применением современных САПР и пакетов прикладных программ.

#### Литература, использованная автором:

1. Энергосберегающие технологии в беспроводной радиоэлектронной аппаратуре: методические указания к лабораторным работам /Рязан. гос.

радиотехн. ун-т; сост.: Н.Г.Кипарисов, Е.В.Васильев, В.Н.Сухоруков. - Рязань, 215 г., 64 с. № 4943.

2. Крюков А.Н. Построение графиков в одних осях в Calc. Учебное электронное издание комплексного распространения. [Электронный ресурс] № 7203 <u>https://elib.rsreu.ru/ebs/download/3204</u>?

**Минимальные системные требования:** Процессор 1,3 GGz, 512 M6 RAM, SVGA (800х600), HDD 3 Gb, просмотрщик документов в формате \*.pdf

Зарегистрировано редакционно-издательским центром РГРТУ 391005, г. Рязань, ул. Гагарина, 59/1 01.01.2021 № 7049 Объём 1,7 Мб. Тел. (4912) 72-03-48, Email: <u>kryukov.a.n@rsreu.ru</u>, <u>https://www.rsreu.ru</u>

 $(\mathbf{C})$ 

#### Цели:

- реализовать программу экспериментальных исследований;

- экспериментально исследовать выходные характеристики термопреобразователя;

- оценить качества термопреобразователя.

#### Введение

В лабораторной работе экспериментально исследуются температурные и вольтамперные характеристики (ВАХ) термоэлектрических полупроводниковых преобразователей (ТЭПП) ТЭС1-12706 (элементов Пельтье) китайской фирмы dlymore на керамической подложке.

Нагрев ТЭПП производится настольной лампой с регулированием диммером.

По результатам измерений заполняются таблицы, строятся графики [2], определяются выходные сопротивления, напряжения холостого хода, токи короткого замыкания, максимальная генерируемая мощность. Оцениваются качества ТЭПП.

## 1. Схема лабораторной установки



Рисунок 1. Лабораторная установка для измерения характеристик ТЭПП

#### 2. Выбор технических средств

На рис. 1 левый авометр лабораторной установки используется в режиме вольтметра постоянного напряжения с пределом 2000 мВ и измеряет выходное напряжение ТЭПП - входное напряжение  $U_{\rm Bx}$ , правый - в режиме миллиамперметра постоянного тока с пределом 20 мА измеряет ток нагрузки  $I_{\rm H}$ . Сопротивление нагрузки  $R_{\rm H}$  можно изменять ручкой лабораторного макета.

1. Установите переключатели пределов измерения авометров в соответствие с рис. 2.

2. Подключите «бананы» лабораторного макета к нижним гнёздам левого авометра.

3. Подключите «крокодилы» ТЭПП к «бананам» макета параллельно.

4. Подключите щупы миллиамперметра параллельно «крокодилам» лабораторного макета.

5. Ручку переменного резистора **R**<sub>н</sub> на лабораторном макете поверните против часовой стрелки до упора.

6. Измерительную головку верхнего термометра вложите в отверстие верхнего радиатора, а измерительную головку нижнего — в отверстие нижнего радиатора.

7. Подключите провода питания вентилятора к лабораторному блоку питания

и установите переключателем напряжение на его выходе 12 В. Тумблером питание лабораторного блока не включайте.

- 8. Убедитесь в свободном вращении вентилятора.
- 9. Предъявите собранную лабораторную установку преподавателю.

## 3. Программа экспериментальных исследований

3.1. Исследование температурной характеристики ТЭПП

10. Откройте LibreOffice Writer, щёлкнув по его ярлыку запуска. Сохраните пустой файл с названием «ЛРЗФамилияГруппа.docx» английскими малыми буквами, например lr3iwanow782.docx в папке «Документы» - «ЭСТ».

11. Вставьте в файл Таблицу 1 из 5 строк и 6 — 7 столбцов, для чего откройте окна Таблица — Вставить таблицу.

| Таблица 1. | Температурн | ая характеристика | а ТЭПП |
|------------|-------------|-------------------|--------|
|            |             |                   |        |

| T1, °C               | 33,6 | 34,4  | 36,5 | 37,9 | 40,5  | 41,6  |
|----------------------|------|-------|------|------|-------|-------|
| T2, °C               | 30,2 | 30,2  | 30,6 | 31,3 | 32,5  | 32,8  |
| U <sub>вх</sub> , мВ | 111  | 146   | 190  | 205  | 235   | 246   |
| I <sub>н</sub> , мА  | 1,0  | 1,3   | 1,7  | 1,8  | 2,68  | 2,82  |
| Р <sub>н</sub> , μВт | 111  | 189,8 | 323  | 369  | 629,8 | 693,7 |

12. Включите питание термометров, переведя переключатель на батарейном отсеке в положение ON.



Включите тумблер питания вентилятора ТЭПП и убедитесь в свободном его вращении. Включите питание настольной лампы, поверните её регулятор на максимальное освещение И направьте на верхний радиатор термогенератора.

Рисунок 2. Питание лабораторной установки включено

13. Снимите температурную характеристику ТЭПП. Для этого каждые 30 с записывайте в Таблицу 1 в файле «ЛРЗФамилияГруппа.docx» показания обоих термометров, значения тока и напряжения на выходе ТЭПП. Записи продолжайте до установления постоянных значений температур, тока и напряжения. Не обращайте внимания на небольшие изменения показаний изза шумов.

Зелёные цифры в таблице 1 приведены для примера

## 3.2. Исследование ВАХ ТЭПП

14. Аналогично п.п. 10, 11 вставьте в файл «ЛРЗФамилияГруппа.docx» таблицы 2 — 4 для записи ВАХ ТЭПП от разности температур.

| T1, °C               | 43,6 | 43,9 | 44,3 | 45,0 | 45,5  | 45,8  |  |  |  |
|----------------------|------|------|------|------|-------|-------|--|--|--|
| T2, °C               | 34,0 | 34,0 | 34,4 | 34,5 | 34,6  | 34,9  |  |  |  |
| U <sub>вх</sub> , мВ | 327  | 336  | 337  | 343  | 323   | 325   |  |  |  |
| I <sub>н</sub> , мА  | 2,78 | 3,72 | 5,56 | 5,76 | 13,22 | 13,32 |  |  |  |
| Р <sub>н</sub> , μВт | 909  | 1249 | 1770 | 1975 | 4270  | 4329  |  |  |  |

Таблица 2. ВАХ ТЭПП при максимальной разности температур

|                      |      | 1 I  | · · I |      | 1 /1 |  |
|----------------------|------|------|-------|------|------|--|
| T1, °C               | 39,4 | 39,6 | 39,9  | 40,5 | 40,6 |  |
| T2, °C               | 33,0 | 33,0 | 33,2  | 33,3 | 33,4 |  |
| U <sub>вх</sub> , мВ | 220  | 223  | 226   | 221  | 211  |  |
| I <sub>н</sub> , мА  | 1,86 | 2,54 | 3,51  | 5,91 | 9,37 |  |
| Р <sub>н</sub> , μВт | 409  | 566  | 793   | 1306 | 1977 |  |

Таблица 3. ВАХ ТЭПП при средней разности температур

Таблица 4. ВАХ ТЭПП при минимальной разности температур

|                      |      | <b>I</b> |       | 1    | 1 /1 |      |
|----------------------|------|----------|-------|------|------|------|
| T1, °C               | 35,4 | 35,9     | 36,0  | 36,6 | 37,2 | 37,4 |
| T2, °C               | 32,8 | 32,6     | 32,6  | 32,6 | 32,8 | 32,6 |
| U <sub>вх</sub> , мВ | 98   | 112      | 123   | 136  | 139  | 142  |
| I <sub>н</sub> , мА  | 0,89 | 0,95     | 1,37  | 2,37 | 4,48 | 4,66 |
| Р <sub>н</sub> , μВт | 87,2 | 106,4    | 168,5 | 322  | 622  | 661  |

15. Снимите ВАХ ТЭПП при максимальной разности температур. Для этого вращайте по часовой стрелке рукоятку переменного резистора  $\mathbf{R}_{\mathbf{H}}$  лабораторного макета и запишите в таблицу 6-8 пар значений тока  $\mathbf{I}_{\mathbf{H}}$  и напряжения  $\mathbf{U}_{\mathbf{Bx}}$ . Впишите значения температур, при которых она снята.

16. Уменьшите нагрев верхнего радиатора термопреобразователя, для чего поверните регулятор настольной лампы на 1/3 оборота против часовой стрелки. Показания верхнего термометра начнут уменьшаться. Дождитесь установления постоянного значения разности температур, небольшие изменения не принимайте во внимание. Впишите значения температур в таблицу 3.

17. Повторите действия по п. 15.

18. Ещё уменьшите нагрев верхнего радиатора термопреобразователя, для чего поверните регулятор настольной лампы на 2/3 оборота против часовой стрелки. Показания верхнего термометра начнут уменьшаться. Дождитесь установления постоянного значения разности температур, шумы не принимайте во внимание. Впишите значения температур в таблицу 4.

19. Повторите действия по п. 15.

20. Отключите настольную лампу, питание вентилятора, термометров и приборов, разберите установку.

## 4. Обработка результатов исследования

Рассчитайте значения мощности Р<sub>н</sub>, выделяемой в нагрузке ТЭПП, для каждой пары значений U<sub>вх</sub> и I<sub>н</sub> и впишите в Таблицы 1 — 4.
 Зелёные цифры в Таблицах 1 — 4 приведены в качестве примера.
 Введите в таблицу Calc [2] данные температурной характеристики ТЭПП, как на рис. 3.

| Фай | л Правка  | Вид Вставк                          | а Формат | Стили Лис | τ Data Ce | ервис Окно | Справка  |
|-----|-----------|-------------------------------------|----------|-----------|-----------|------------|----------|
|     | • 🚞 • 🚺   | · 🚺 🔮                               | l Q 🐰    | 🖌 🖡 -     | 👌 🗛       | 🥎 • 🥐 ·    | Q₂ A₿    |
| Ar  | rial      | - 10                                | • A      |           | • 🔊 •     | ≡ ≡ ≡      | <b>F</b> |
| E29 |           | <ul> <li>f<sub>X</sub> Σ</li> </ul> | =        |           |           |            |          |
|     | Α         | В                                   | С        | D         | E         | F          | G        |
| 1   | Т1-Т2, гр | 3,4                                 | 4,2      | 5,9       | 6,6       | 8          | 8,8      |
| 2   | Рн. мкВт  | 111                                 | 189.8    | 323       | 369       | 629.8      | 693.7    |

Рисунок 3. Данные температурной характеристики ТЭПП введены в таблицу Сохраните таблицу в файл с именем «ЛРЗФамилияГруппаТемп.xlsx» в той же папке «Документы» - «ЭСТ»

# 23. Введите в таблицу Calc данные зависимости напряжения $U_{\text{вк}}$ ТЭПП от тока нагрузки $I_{\text{н}}$ для различных значений разности температур, как на рис. 4.

| Фай | л Правка                                      | Вид Вставк         | а Формат | Стили Лис | т Data Ce | ервис Окно | Справка |  |  |
|-----|-----------------------------------------------|--------------------|----------|-----------|-----------|------------|---------|--|--|
|     | • 📄 • 🍕                                       | · • 🚺 🗄            | 0 0 📈    | 🧔 🖡 -     | 👌 🗛       | 🥱 • 🥐 ·    | Q₂ A₿   |  |  |
| Li  | Liberation S 🔹 10 🔹 🛦 A A A 🗛 🚣 🐨 🖾 - 🚍 = = = |                    |          |           |           |            |         |  |  |
| 111 |                                               | - f <sub>X</sub> Σ | =        |           |           |            |         |  |  |
|     | Α                                             | В                  | С        | D         | E         | F          | G       |  |  |
| 1   | Ін тах                                        | 2,78               | 3,72     | 5,56      | 5,76      | 13,22      | 13,32   |  |  |
| 2   | UBX max                                       | 327                | 336      | 337       | 343       | 323        | 325     |  |  |
| 3   |                                               |                    |          |           |           |            |         |  |  |
| 4   | l <u>h sr</u>                                 | 1,86               | 2,54     | 3,51      | 5,91      | 9,37       |         |  |  |
| 5   | Ubx sr                                        | 220                | 223      | 226       | 221       | 211        |         |  |  |
| 6   |                                               |                    |          |           |           |            |         |  |  |
| 7   | ly min                                        | 0,89               | 0,95     | 1,37      | 2,37      | 4,48       | 4,66    |  |  |
| 8   | UBX min                                       | 98                 | 112      | 123       | 136       | 139        | 142     |  |  |
| -   |                                               |                    |          |           |           |            |         |  |  |

Рисунок 4. Данные ВАХ ТЭПП введены в таблицу

Сохраните таблицу в файл с именем «ЛР3ФамилияГруппаНапр.xlsx» в той же папке «Документы» - «ЭСТ»

24. Постройте в файле «ЛРЗФамилияГруппа.docx» графики температурной характеристики ТЭПП и ВАХ ТЭПП при трёх значениях разности температур, как на рис. 5 и 6.



Температурная характеристика ТЭПП

Рисунок 5. Температурная характеристика ТЭПП





Рисунок 6. ВАХ ТЭПП при максимальной разности температур (синий график), средней (красный график) и малой (жёлтый график)

Рекомендуется использовать файлы «ЛРЗФамилияГруппаТемп.xlsx», «ЛР1ФамилияГруппаНапр.xlsx» и пошаговую инструкцию построения графиков, элементы которых представлены в строках LibreOffice Calc [2], которая скачивается из вводного модуля курса ЭСТ.

25. Определите значения напряжений холостого хода, токов короткого замыкания и выходных сопротивлений ТЭПП.

26. Определите значения максимальных генерируемых мощностей.

27. Оформите работу: титульный лист, вариант, цель, схема лабораторной установки, таблицы, графики. Сделайте выводы.

Значения, полученные в результате исследования ТЭПП, могут отличаться от приведенных в Таблицах 1-4 зелёным цветом.

Выводы ниже приведены в качестве примера.

#### Выводы:

1. Мощность ТЭПП растёт с ростом разницы температур. Температурная характеристика ТЭПП почти линейна. Это происходит потому, что...

2. Напряжение холостого хода  $U_{xx}$  ТЭПП при максимальной разнице температур равно  $U_{xx} = 327$  мВ, при средней -  $U_{xx} = 220$  мВ, при малой  $U_{xx} = 89$  мВ Это происходит потому, что...

3. Ток короткого замыкания  $I_{\kappa_3}$  ТЭПП во время исследования определить не удалось. Это произошло потому, что...

4. Выходное сопротивление ТЭПП равно  $\mathbf{R}_{\text{вых}} = 2,68$  Ом при максимальной разнице температур и равно  $\mathbf{R}_{\text{вых}} = 2,89$  Ом при средней разнице температур. При минимальной разнице температур выходное сопротивление отрицательное. Это произошло потому, что...

5. Максимальная мощность, генерируемая ТЭПП равна  $\mathbf{P}_{\text{мах}} = 4,33$  мВт, наблюдается при ...

6. С увеличением тока нагрузки ТЭПП выходное напряжение падает. Это происходит потому, что...

7. С увеличением тока нагрузки мощность ТЭПП растёт. Это происходит потому, что...

8. По результатам исследования ТЭПП целесообразно использовать в...

28. Скопируйте файлы «ЛР3ФамилияГруппа.docx» «ЛР3ФамилияГруппаТемп.xlsx», «ЛР1фамилиягруппаНапр.xlsx» в элемент «Задание» дистанционного курса ЭСТ «ЛР3 Исследование термопреобразователя». При необходимости файлы можно зазиповать.

29. Защитите работу.