МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Систем автоматизированного проектирования вычислительных средств»

«СОГЛАСОВАНО»

Директор ИМиА

/ Бодров О.А. / 2020 г

Заведующий кафедрой САПР ВС

/ Корячко В.П. /

2020 г

TBEPKIAH» тор РОПиМД

≰Корячко А.В. /

2020 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.Б.Д.05 «Методы тепловой защиты ЭС»

шифр

11.04.03 «Конструирование и технология электронных средств»

Шифр и название направления подготовки

Уровень подготовки магистратура

Квалификация выпускника – магистр Бакалавр / специалист

Форма обучения – <u>очная, очно-заочная</u> очная / заочная / очно-заочная

Рязань 2020 г.

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требований федерального государственного образовательного стандарта высшего образования - магистратура по направлению подготовки 11.04.03 «Конструирование и технология электронных средств», утвержденного приказом Минобрнауки России от 22.09.2017 г. № 956. (дата утверждения ФГОС ВО)

Разработчики
доцент кафедры Систем автоматизированного проектирования вычислительных средств
(должность, кафедра)
P
(подпись)(Ф.И.О.)
Программа рассмотрена и одобрена на заседании кафедры Систем автоматизированног
проектирования вычислительных средств
« <u>31</u> » <u>08</u> 20 <u>20</u> г., протокол № <u>1</u>
Заведующий кафедрой
Систем автоматизированного проектирования вычислительных средств
(кафедра)
Nell .
/ Корячко В.П. /
(подпись) (Ф.И.О.)

1. ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины «Методы тепловой защиты ЭС» является изучение подходов к расчету тепловых режимов конструкций электронной аппаратуры в профессиональной деятельности.

Задачи дисциплины:

- 1) Получение теоретических знаний о принципах расчета тепловых режимов конструкций электронной аппаратуры для решения теоретических и прикладных задач.
- 2) Приобретение умения использовать принципы расчета тепловых режимов конструкций электронной аппаратуры.
- 3) Приобретение практических навыков в области расчета тепловых режимов конструкций электронной аппаратуры для решения теоретических и прикладных задач и внедрения результатов в производство.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Методы тепловой защиты конструкций ЭС» является обязательной частью блока №1 дисциплин магистратуры «Конструирование и технология электронновычислительных средств» и «Информационные технологии конструирования электронных средств» по направлению подготовки 11.04.03 «Конструирование и технология электронных средств» ФГБОУ ВО «РГРТУ».

Дисциплина изучается по очной форме обучения на 1 курсе в 1 семестре.

Пререквизиты дисциплины. Для освоения дисциплины обучающийся должен иметь компетенции, полученные в результате освоения дисциплин «Физика», «Математика», «Тепломассообмен в ЭС» по программе бакалавриата. Для освоения дисциплины обучающийся должен:

знать:

- расчет конструкций ЭС коэффициентным методом;
- методы расчета конструкций ЭС на основе конвективных процессов;
- методы расчета конструкций ЭС с учетом совместного воздействия кондукции, теплового излучения и конвекции; *уметь*:
- осуществлять сбор и анализ исходных данных из различных источников с использованием современных информационных технологий;
- разрабатывать программы для моделирования температурных режимов ЭА; владеть:
- навыками алгоритмизации и программной реализации типовых задач расчета температурных режимов ЭА;
- методиками работы со стандартными пакетами прикладных программ для расчета температурных режимов ЭА.

Взаимосвязь с другими дисциплинами. Курс «Методы тепловой защиты ЭС» содержательно и методологически взаимосвязан с другими курсами, такими как: «Моделирование конструкций и технологических процессов», «Схемотехническое проектирование ЭС».

Программа курса ориентирована на возможность расширения и углубления знаний, умений и навыков магистра для успешной профессиональной деятельности.

Постреквизиты дисциплины. Компетенции, полученные в результате освоения дисциплины необходимы обучающемуся при изучении следующих дисциплин: «Преддипломная практика», «Выпускная квалификационная работа».

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с $\Phi \Gamma OC$ BO по данному направлению подготовки, а также компетенций, установленных университетом.

Самостоятельно устанавливаемые профессиональные компетенции выпускников и индикаторы их достижения

-	 Інформационные тех	Код и наименование инди- катора достижения профес- сиональной компетенции струирование и технология эле кнологии конструирования эле	-
Владение инфор-	средств ОПК-3.	ИД-1 опк-3.	
мационными тех-	Способен приоб-	Знает принципы построе-	
нологиями	ретать и исполь-	ния локальных и глобаль-	
	зовать новую ин-	ных компьютерных сетей,	
	формацию в сво-	основы Интернет-	
	ей предметной	технологий, типовые про-	
	области, предла-	цедуры применения про-	
	гать новые идеи и	блемноориентированных	
	подходы к реше-	прикладных программных	
	нию инженерных	средств в дисциплинах	
	задач	профессионального цикла	
		и профессиональной сфере	
		деятельности. ИД-2 _{ОПК-3} .	
		Умеет использовать совре-	
		менные информационные и	
		компьютерные технологии,	
		средства коммуникаций,	
		способствующие повыше-	
		нию эффективности науч-	
		ной и образовательной	
		сфер деятельности.	
		ИД-3 опк-3.	
		Владеет методами матема-	
		тического моделирования	
		электронных средств и	
		технологических процессов	

с использованием совре-	
менных информационных	
технологий.	

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1 Объем дисциплины по семестрам (курсам) и видам занятий в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 4 зачетных единицы (ЗЕ), 144 часов.

Вид учебной работы	Всего	Семестры
	часов	1
Аудиторные занятия (всего)	48	48
В том числе:		
Лекции	16	16
Лабораторные работы (ЛР)	16	16
Практические занятия (ПЗ)	16	16
Семинары (С)		
Курсовой проект/(работа) (аудиторная нагрузка)		
Другие виды аудиторной работы		
Самостоятельная работа (всего)	51	51
В том числе:		
Курсовой проект (работа) (самостоятельная работа)		
Реферат		
Другие виды самостоятельной работы	51	51
Контроль	45	45
Вид промежуточной аттестации (зачет, дифференциро-	экзамен	экзамен
ванный зачет, экзамен)	экзамен	экзамен
Общая трудоемкость, час	144	144
Зачетные Единицы Трудоемкости	4	4
Контактная работа (по учебным занятиям)	48	48

4.2 Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

№	Раздел дисципли- ны	Общая трудо- емкость, всего часов	0(Контактная работа та обучающихся с преподавателем		ся	Самостоятельная работа обучаю- щихся	Контроль
			всего	лекции	практ	лабор		
	Семестр 1							
1	Обобщение результатов исследований.	6	4	2	2		2	

2	Теплообмен излу-	8	4	2	2		4	
	чением							
3	Конвективный теп-	16	8	2	2	4	8	
	лообмен							
4	Гидродинамический	16	8	2		4	8	
	и тепловой							
	пограничные слои							
5	Теория подобия.	13	6	2		4	7	
	Критерии подобия							
6	Обработка	14	8	2	2	4	6	
	результатов опыта							
7	Конвективный	14	6	2	4		8	
	теплообмен в							
	плоскостных блоках							
	на микросхемах							
8	Нестационарные	14	6	2	4		8	
	процессы теплопро-							
	водности							
9	Экзамен	45						45
	Всего	144	48	16	16	16	51	45

4.3 Содержание дисциплины

4.3.1 Лекционные занятия

$N_{\underline{0}}$	Темы лекционных занятий	Трудоемкость	Формируемые	Форма
Π/Π	темы лекционных занятии	(час.)	компетенции	контроля
1	Обобщение результатов исследований.	2	ОПК-3	экзамен
2	Теплообмен излучением	2	ОПК-3	экзамен
3	Конвективный теплообмен	2	ОПК-3	экзамен
4	Гидродинамический и тепловой	2	ОПК-3	экзамен
	пограничные слои			
5	Теория подобия. Критерии подобия	2	ОПК-3	экзамен
6	Обработка результатов опыта	2	ОПК-3	экзамен
7	Конвективный теплообмен в	2	ОПК-3	экзамен
	плоскостных блоках на микросхемах			
8	Нестационарные процессы теплопро-	2	ОПК-3	экзамен
	водности			

4.3.2 Лабораторные занятия

№ п/п	Тематика практических занятий	Трудоемкость (час.)	Формируемые компетенции	Форма контроля
1	Конвективный теплообмен	4	ОПК-3	экзамен
2	Гидродинамический и тепловой пограничные слои	4	ОПК-3	экзамен
3	Теория подобия. Критерии подобия	4	ОПК-3	экзамен
4	Обработка результатов опыта	4	ОПК-3	экзамен

4.3.3 Практические занятия

№ п/п	Тематика практических занятий	Трудоемкость (час.)	Формируемые компетенции	Форма контроля
1	Обобщение результатов исследований.	2	ОПК-3	экзамен
2	Конвективный теплообмен	2	ОПК-3	экзамен
3	Обработка результатов опыта	2	ОПК-3	экзамен
4	Конвективный теплообмен в плоскостных блоках на микросхемах	4	ОПК-3	экзамен
5	Нестационарные процессы теплопроводности	4	ОПК-3	экзамен

4.3.4 Самостоятельная работа

№	Тематика самостоятельной работы	Трудоемкость	Формируемые	Форма
Π/Π	тематика самостоятельной работы	(час.)	компетенции	контроля
1	Обобщение результатов исследований.	2	ОПК-3	экзамен
2	Теплообмен излучением	4	ОПК-3	подготовка к ПЗ, экзамен
3	Конвективный теплообмен	8	ОПК-3	подготовка к ПЗ, экзамен
4	Гидродинамический и тепловой пограничные слои	8	ОПК-3	подготовка к ЛР, экзамен
5	Теория подобия. Критерии подобия	7	ОПК-3	подготовка к ЛР, экзамен
6	Обработка результатов опыта	6	ОПК-3	подготовка к ЛР, экзамен
7	Конвективный теплообмен в плоскостных блоках на микросхемах	8	ОПК-3	подготовка к ПЗ, экзамен
8	Нестационарные процессы теплопроводности	8	ОПК-3	подготовка к ПЗ, экзамен

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Оценочные материалы приведены в приложении к рабочей программе дисциплины (см. документ «Оценочные материалы по дисциплине «Методы тепловой защиты ЭС»).

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1. Основная литература

- 1) Дьяконов В.Г. Основы теплопередачи и массообмена [Электронный ресурс] : учебное пособие / В.Г. Дьяконов, О.А. Лонщаков. Электрон. текстовые данные. Казань: Казанский национальный исследовательский технологический университет, 2015. 244 с. 978-5-7882-1813-7. Электронно-Библиотечная Система "IPRbooks" Режим доступа: http://www.iprbookshop.ru/63714.html
- 2) Белкин П.Н., Шадрин С.Ю. Теплофизика [Электронный ресурс] : сборник задач / П.Н. Белкин. Электрон. текстовые данные. Саратов: Вузовское образование, 2013. 51 с. —2227-8397. Электронно-Библиотечная Система "IPRbooks"— Режим доступа: http://www.iprbookshop.ru/18392.html
- 3) Кудинов И.В., Кудинов В.А., Еремин А.В., Колесников С.В. Математическое моделирование гидродинамики и теплообмена в движущихся жидкостях. Издательство "Лань". Электронно-библиотечная система «Лань». 2015. 208 с.

Режим доступа: https://e.lanbook.com/book/56168?category_pk=2577#book_name

4) Дерюгин В.В. Тепломассообмен [Электронный ресурс] : учебное пособие / В.В. Дерюгин, В.Ф. Васильев, В.М. Уляшева. — Электрон. текстовые данные. — СПб. : Санкт-Петербургский государственный архитектурно-строительный университет, ЭБС АСВ, 2016. — 244 с. — 978-5-9227-0690-2. — Электронно-Библиотечная Система "IPRbooks" Режим доступа: http://www.iprbookshop.ru/74378.html.

6.2. Дополнительная литература

- 1) Губарев В.Я., Арзамасцев А.Г. Тепломассобмен [Электронный ресурс] : методические указания к практическим занятиям / . Электрон. текстовые данные. Липецкий государственный технический университет, ЭБС АСВ, 2014. 18 с. 2227-8397. Электронно-Библиотечная Система "IPRbooks" Режим доступа: http://www.iprbookshop.ru/55162.html
- 2) Логинов В.С., Крайнов А.В., Юхнов В.Е., Феоктистов Д.В. Примеры и задачи по тепломассообмену. Издательство "Лань". Электронно-библиотечная система «Лань». 2017. 256 с. Режим доступа: https://e.lanbook.com/book/93718?category_pk=2577#book_name
- 3) Нестерук Д.А. Тепловой контроль и диагностика [Электронный ресурс] : учебное пособие / Д.А. Нестерук, В.П. Вавилов. Электрон. текстовые данные. Томск: Томский политехнический университет, 2010. 112 с. 978-5-98298-688-7. Электронно-Библиотечная Система "IPRbooks". Режим доступа: http://www.iprbookshop.ru/34724.html

6.3. Методические указания к курсовому проектированию (курсовой работе) и другим видам самостоятельной работы обучающихся

Изучение дисциплины «Методы тепловой защиты ЭС» проходит в течение 1 семестра. Курсовая работа по данной дисциплине не предусмотрена. Основные темы дисциплины осваиваются в ходе аудиторных занятий, однако важная роль отводится и самостоятельной работе студентов.

Самостоятельная работа включает в себя следующие этапы:

- изучение теоретического материала (работа над конспектом лекции);
- самостоятельное изучение дополнительных информационных ресурсов (доработка конспекта лекции);

- выполнение заданий текущего контроля успеваемости (подготовка к защите лабораторных работ, подготовка к практическому занятию);
- итоговая аттестация по дисциплине (подготовка к зачету и экзамену).

Для освоения дисциплины требуется предварительная подготовка в области программирования на любом из языков программирования высокого уровня и навыки разработки программного обеспечения с помощью интегрированных программных сред (IDE), включающих в себя компилятор и отладчик.

Методические указания при проведении практических работ описаны в методических указаниях к лабораторным работам. Обязательное условие успешного усвоения курса — большой объём самостоятельно проделанной работы.

<u>Работа над конспектом лекции.</u> Лекции — основной источник информации по предмету, позволяющий не только изучить материал, но и сопоставить разные способы решения задач и практического применения получаемых знаний. Лекции предоставляют возможность интерактивного обучения, когда есть возможность задавать преподавателю вопросы и получать на них ответы.

Рекомендуется следующим образом организовать время, необходимое для изучения дисциплины:

Изучение конспекта лекции в тот же день, после лекции – 10-15 минут.

Изучение теоретического материала по рекомендованным изданиям и конспекту -1 час в неделю в ходе подготовки к лабораторным и практическим занятиям.

Подготовка к лабораторным и практическим занятиям.

Перед выполнением лабораторного или практического занятия необходимо внимательно ознакомиться с заданием, полученным у преподавателя

Перед сдачей работы рекомендуется ознакомиться со списком вопросов изучаемой темы и попытаться самостоятельно на них ответить, используя конспект лекций и рекомендуемую учебно-методическую литературу. Таким образом вы сможете сэкономить свое время и время преподавателя.

Кроме чтения учебной литературы из обязательного и дополнительного списка рекомендуется активно использовать информационные ресурсы сети Интернет по изучаемой теме

Другие виды самостоятельной работы.

Самостоятельная работа как вид учебной работы может использоваться на лекциях, лабораторных и практических занятиях, а также иметь самостоятельное значение — внеаудиторная самостоятельная работа обучающихся — при подготовке к лекциям, лабораторным и практическим занятиям, а также к теоретическому зачету и экзамену.

Основными видами самостоятельной работы по дисциплине " Методы тепловой защиты ЭС " являются:

- самостоятельное изучение отдельных вопросов и тем дисциплины;
- составление расчетной модели в рамках лабораторного или практического занятия, ее обоснование и расчет;
 - подготовка к защите лабораторного или практического задания, оформление отчета.

Самостоятельное изучение тем учебной дисциплины способствует:

- закреплению знаний, умений и навыков, полученных в ходе аудиторных занятий;
- углублению и расширению знаний по отдельным вопросам и темам дисциплины;
- освоению умений прикладного и практического использования полученных знаний в области тепловой защиты ЭС;

<u>Подготовка к промежуточной аттестации.</u> Промежуточная аттестация по семестровой программе предусматривает сдачу экзамена. Основной вид подготовки обучающегося при этом – «свертывание» большого объема информации в компактный вид, а также тренировка

в ее «развертывании» (примеры к теории, иллюстрация решения задач и т.д.). Надо также правильно распределить время, не только готовясь к самому зачету или экзамену, но и позаботившись о допуске к нему, что включает регулярное посещение занятий, выполнение лабораторных и практических работ и их сдача в назначенные сроки.

7. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1) Единое окно доступа к образовательным ресурсам: [Электронный ресурс]: сайт. URL: http://window.edu.ru. Режим доступа: свободный.
- 2) Интернет Университет Информационных Технологий [Электронный ресурс]: сайт. URL:http://www.intuit.ru. Режим доступа: свободный.
- 3) Электронно-библиотечная система «IPRbooks» [Электронный ресурс]: сайт. URL: https://iprbookshop.ru. Режим доступа: для авториз. пользователей.
- 4) Электронно-библиотечная система издательства «Лань» [Электронный ресурс]: сайт. URL: https://www.e.lanbook.com. Режим доступа: для авториз. пользователей.
- 5) Электронная библиотека РГРТУ [Электронный ресурс]: сайт. URL: https://elib.rsreu.ru Режим доступа: для авториз. пользователей.

8. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства:

- 1) Операционная система Windows XP (Microsoft Imagine, номер подписки 700102019, бессрочно);
- 2) Операционная система Windows XP (Microsoft Imagine, номер подписки ID 700565239, бессрочно);
- 3) Kaspersky Endpoint Security (коммерческая лицензия на 1000 компьютеров №2922-190228-101204-557-1191, срок действия с 28.02.2019 по 07.03.2021);
- 4) LibreOffice (свободная лицензия MPL v2). URL: https://ru.libreoffice.org/download (дата обращения 29.08.2019);
- 5) Adobe Acrobat Reader DC (бесплатная лицензия Adobe). URL: https://get.adobe.com/ru/reader (дата обращения 29.08.2019);

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для освоения дисциплины необходимы следующие материально-технические ресурсы:

- 1) дляпроведения лекционных занятий, групповых и индивидуальных консультаций, а также самостоятельной работы обучающихся необходима аудитория с достаточным количеством посадочных мест, соответствующая необходимым противопожарным нормам и санитарно-гигиеническим требованиям, оснащенная проекционным оборудованием и персональным компьютером с операционной системой Microsoft Windows XP (или выше) и установленным пакетом LibreOffice;
- 2) для проведения лабораторных и практических занятий, текущего контроля и промежуточной аттестации (зачет) необходима аудитория с достаточным количеством посадочных мест, оснащенная персональными компьютерами с инсталлированной операционной системой Microsoft Windows XP (или выше) и установленной программной средой, подключенными к локальной вычислительной сети и сети Интернет (компьютерный класс).

№	Наименование специальных помеще-	Перечень специализированного оборудования
	ний и помещений для самостоятельной	
	работы	
1	Учебная аудитория № 50а главного учеб-	48 мест, столы, стулья, маркерная доска,
	ного корпуса для проведения занятий	мультимедиа проектор, экран, компьютер с
	лекционного и семинарского типа, груп-	возможностью подключения к сети «Интернет» и
	повых и индивидуальных консультаций,	обеспечением доступа в электронную
	самостоятельной работы обучающихся,	информационно-образовательную среду РГРТУ
	текущего контроля и промежуточной ат-	
	тестации	
2	Учебная аудитория № 157 главного учеб-	25 мест, столы, стулья, доска интерактивная,
	ного корпуса для проведения занятий	мультимедиа проектор, экран, 11 компьютеров с
	лекционного и семинарского типа, лабо-	возможностью подключения к сети «Интернет» и
	раторных и практических занятий, груп-	обеспечением доступа в электронную
	повых и индивидуальных консультаций,	информационно-образовательную среду РГРТУ
	текущего контроля и промежуточной ат-	
	тестации	

Программу составил:	
к т.н. поцент каф. САПР ВС	(Скоз Е.Ю.)