МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Космические технологии»

редерации (муТВЕРЖДАЮ

Проректор РОПиМД

А.В. Корячко

06 2020 г.

СОГЛАСОВАНО

Декан ФВТ

Д.А. Перепелкин

« 25» 06 2020 г.

Заведующий кафедрой КТ

С.И. Гусев

2020 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

Б1.О.23 «Теоретическая механика»

Направление подготовки - 02.03.01 Математика и компьютерные науки

ОПОП академического бакалавриата «Математика и компьютерные науки»

Квалификация (степень) выпускника — бакалавр Форма обучения — очная

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования по направлению подготовки (специальности) 02.03.01 «Математика и компьютерные науки» (уровень бакалавриата), утверждённого приказом Минобрнауки России № 807 от 23.08.2017 г.

Разработчики:		
д.т.н., профессор кафедры «Космические технологии»	5075	Г.А. Борисов
к.т.н., доцент кафедры «Космические технологии»		Р.А. Чесноков
старший преподаватель кафедры «Космические технологии»	Ahr-	_ А.П. Капранов
Программа рассмотрена и од технологии» «23» июня 2020 г., пр		кафедры «Космические
Заведующий кафедрой «Космические технологии»	Mar	_ С.И. Гусев

1. Обшие положения

Программа составлена в соответствии с ФГОС ВО по направлению подготовки 09.06.01 Информатика и вычислительная техника.

Цели и задачи дисциплины

Цель дисциплины: формирование системы профессиональных знаний и практических навыков по теоретической механике. Формирование представления о механических моделях материальных объектов реального мира; изучение общих законов механики, которым подчиняются движение и равновесие систем материальных тел с учетом возникающих при этом механических взаимодействий; получение опыта творческой деятельности при решении самостоятельных задач. Задачи дисциплины: приобретение студентами умения строить механические и математические модели технических систем и исследовать их, квалифицированно применяя основные методы статического, кинематического и динамического анализа механических систем; развитие логического и творческого мышления, необходимых при решении производственных задач.

Задачами дисциплины являются:

- приобретение студентами умения строить механические и математические модели технических систем и исследовать их, квалифицированно применяя основные методы статического, кинематического и динамического анализа механических систем;
- развитие логического и творческого мышления, необходимых при решении производственных задач.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине (ЗУНы)
ОПК-1 способен консультировать и использовать фундаментальные знания в области теоретической механики в профессиональной деятельности.	Знать: постановки классических задач теоретической механики; основные понятия и аксиомы, законы, принципы теоретической механики. Фундаментальные понятия кинематики и кинетики, основные законы равновесия и движения материальных объектов. Уметь: оценивать корректность поставленной задачи; применять основные законы и принципы теоретической механики.

Владеть: методами математического моделирования статического, кинематического и динамического состояния механических систем.

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
Математический анализ, Алгебра и тео-	Прикладная механика.
рия чисел	

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
Математический анализ, Алгебра и тео-	Знать: теорию дифференциального и ин-
рия чисел	тегрального исчислений; уметь: находить
	производные и простейшие интегралы,
	решать системы линейных уравнений;
	владеть: навыками дифференцирования и
	интегрирования функций для решения за-
	дач механики.

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 5 з.е., 180 ч.

Вид учебной работы	Всего	Распределение
	часов	Номер семестра 5
Общая трудоёмкость дисциплины	180	180
Контакт.:	64	64
Лекции (Л)	32	32
Практические занятия (ПЗ)	32	32
Самостоятельная работа (СР):	107	107
Контроль	8,75	8,75

Вид итогового контроля	-	зачет

5. Содержание дисциплины

No	Наименование разделов дисциплины	Объем аудиторных занятий		
раздела		по видам в часах		
		Всего	Л	П3
1	Статика	24	12	12
2	Кинематика	20	10	10
3	Динамика	20	10	10

5.1. Лекции

Раздел 1. Статика

- 1.1. Геометрическая статика. Основные понятия. Предмет и задачи статики. Основные понятия: сила, система сил, пара сил, уравновешенная и уравновешивающая система сил, равнодействующая сила, свободное и несвободное ТТ. Геометрическая статика. Основные понятия. Предмет и задачи статики. Основные понятия: сила, система сил, пара сил, уравновешенная и уравновешивающая система сил, равнодействующая сила, свободное и несвободное ТТ.
- 1.2. Теория моментов. Момент силы относительно центра и оси. Алгебраический момент силы относительно центра. Пара сил. Главный вектор и главный момент системы сил относительно центра.
- 1.3. Аксиомы геометрической статики: о равновесии свободного твердого тел; о равенстве действия и противодействия; связи в геометрической статике. Классификация связей. Реакции связей. Аксиома освобождаемости от связей; аксиома затвердевании. Векторные и аналитические условия равновесия произвольной системы сил.
- 1.4. Эквивалентные преобразования систем сил. Эквивалентные системы сил. Теорема эквивалентности. Приведение произвольной системы сил к центру. Приведение системы сил к простейшему виду. Инварианты системы сил.
- 1.5. Трение. Законы трения скольжения. Законы трения качения. Центр тяжести твердого тела и его координаты.

Раздел 2. Кинематика.

2.1. Введение в кинематику. Предмет кинематики. Основные понятия и аксиомы кинематики. Кинематика точки. Векторный, координатный и естественный способы задания движения точки.

- 2.2. Простейшие движения ТТ: поступательное и вращательное вокруг неподвижной оси: распределение скоростей и ускорений точек тела; угловая скорость и угловое ускорение вращающегося ТТ. Векторные формулы вращательного движения тела.
- 2.3. Плоскопараллельное движение твердого тела: уравнения движения; кинематические характеристики ТТ; теоремы о распределении скоростей и ускорений точек плоской фигуры. Мгновенный центр скоростей (МЦС). Теорема о существовании МЦС. Мгновенное представление движения плоской фигуры. Способы определения МЦС.
- 2.4. Сложение движений точки. Абсолютное, относительное движения точки, переносное движение. Теоремы о сложении скоростей и ускорений. Ускорение Кориолиса.
- 2.5 Движение твердого тела вокруг неподвижной точки: углы Эйлера; теорема Эйлера. Теорема Ривальса. Общий случай движения свободного твердого тела: уравнения движения; кинематические характеристики ТТ; скорости и ускорения точек ТТ.
- 2.6 Сложное движение твердого тела. Теоремы о сложении скоростей полюса, угловых скоростей. Метод Виллиса.

Раздел 3. Динамика

- 3.1. Предмет динамики. Динамика материальной точки. Аксиомы законы Галилея и Ньютона. Инерциальная и неинерциальная системы отсчета. Две задачи динамики. Дифференциальные уравнения движения точки в инерциальном пространстве.
- 3.2. Общие теоремы динамики механической системы. Теорема об изменении количества движения механической системы: количество движения материальной точки и механической системы; импульс силы. Закон сохранения количества движения. Теоремы о движении центра масс.
- 3.3. Геометрия масс. Центр масс механической системы. Осевые и центробежные моменты инерции ТТ. Главные и центральные оси инерции. Осевые моменты инерции тел простейшей формы. Понятие тензора инерции.
- 3.4. Принцип Даламбера для материальной точки и механической системы. Главный вектор и главный момент сил инерции частиц тела относительно неподвижного центра и центра масс.
- 3.5 Принцип Даламбера-Лагранжа. Общее уравнение динамики в обобщенных координатах.
- 3.6 Уравнения Лагранжа второго рода. Обобщенные координаты. Обобщенные силы.

5.2. Практические занятия, семинары

№ заня-	№ раздела	Наименование	или	краткое	содержание	практического	Кол-
ТИЯ		занятия, семина	apa				во
							часов

1	1	Равновесие плоской системы сил. Равновесие свободного тела и системы сочлененных ТТ. Освоение методики решения задач геометрической статики, связанных с нахождением и реакций внешних и внутренних связей.	4
2	1	Фермы. Освоение методики расчета стержневых конструкций методом вырезания узлов и методом сечений	4
3	1	Равновесие пространственной произвольной системы сил.	4
4	2	Кинематика точки. Определение радиуса кривизны траектории.	5
5	2	Кинематика плоских механизмов. Освоение методики кинематического исследования плоского механизма.	5
6	3	Динамика материальной точки. Две задачи динамики. Освоение методики решения первой и второй задач динамики материальной точки в инерциальной системе отсчета.	4
7	3	Теорема об изменении кинетической энергии. Применение общих теорем динамики к изучению движения механической системы.	4
8	3	Принцип Даламбера. Применение к решению задач динамики.	2

5.3.Самостоятельная работа студента

	Выполнение СРС		
	Список литературы (с указанием разделов, глав, страниц)	Кол-во сов	ча-
заданий. Решение задач			
стержневых конструкций.			

ки. Кинематика точки. Простейшие движения	[1 осн.] Кинематика, Гл. 9–11, 13; с. 143–211, 233–239. [2 осн.] Кинематика, Гл. 1–3, 5; с. 104–176, 195–204. [3 осн.] Задание К-1, К-2, [1 доп] Задания 2, 3, 5, [2 доп] Задания 5, 7.	30
Линейные колебания ма-	1 осн.] Динамика, Гл. 1, 8–10; с. 9–27, 180–248. [2 осн.] Динамика, Гл. 1, 4, 5; с. 235–243, 293– 370. [3 осн.] Задания Д-3, Д-10, Д-16, Д-19	30
Подготовка к зачеты	Вся литература	17

6. Инновационные образовательные технологии, используемые в учебном процессе

Инновационные формы	Вид работы (Л, ЛР)	Краткое описание	Кол-во
учебных занятий			ауд.
			часов
Применение мультимедий-	Лекции	В разделах кинематика и	8
ных технологий		динамика демонстрирует-	
		ся анимации и решения,	
		полученные в Mathcad,	
		анимации в теории плос-	
		кого движения, сложения	
		движений тела.	

Использование результатов научных исследований, проводимых университетом, в рамках данной дисциплины.

7. Фонд оценочных средств (ФОС) для проведения текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины

Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине представлен в виде оценочных материалов и приведен в Приложении.

8. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

- 1. Тарг С. М. Краткий курс теоретической механики. М.: Высшая школа, 2005.
- 2. Никитин, Н. Н. Курс теоретической механики Учеб. для машиностр. и приборостр. специальностей вузов Н. Н. Никитин. 6-е изд., перераб. и доп. М.: Высшая школа, 2003. 718, [1] с. ил.
- 3. Бутенин, Н. В. Курс теоретической механики Текст Т. 1 Статика и кинематика Т. 2 Динамика учеб. пособие для вузов по техн. специальностям : в 2 т. Н. В. Бутенин, Я. Л. Лунц, Д. Р. Меркин. 9-е изд., стер. СПб. и др.: Лань, 2007. 729 с.
- 4. Яблонский, А. А. Сборник заданий для курсовых работ по теоретической механике Учеб. пособие для втузов Под общ. ред. А. А. Яблонского. 4-е изд., перераб. и доп. М.: Высшая школа, 1985. 367 с. ил.

б) дополнительная литература:

- 1. Кинематика Текст Ч. 1 сб. заданий Н. Н. Ведерников, С. И. Пономарева, Ю. Г. Прядко, О. Г. Худякова; Юж.-Урал. гос. ун-т, Каф. Теорет. механика; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2003. 77, [1] с. электрон. версия.
- 2. Пономарева, С. И. Кинематика Текст Ч. 2 сб. заданий С. И. Пономарева, Ю. Г. Прядко, О. Г. Худякова; Юж.-Урал. гос. ун-т, Каф. Теорет. механика; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2005. 66, [1] с. ил. электрон. версия.
- 3. Механика: методические указания/Рязан. гос. радиотех. ун-т; сост.: А.А. Зенин, В.И. Нестеренко, В.А. Горелов. Рязань: РГРТУ, 2009. 32с.

Электронная учебно-методическая документация

№	Вид литературы	Наименование разработки		(сеть Интер-
1	Основная литература	[Электронный ресурс] —	библиотечная	Интернет / Авторизованн ый
2	ая литература	Н.В. Бутенин, Я.Л. Лунц, Д.Р.	библиотечная	Интернет / Авторизованн ый

9. Информационные технологии, используемые при осуществлении образовательного процесса

Перечень используемого программного обеспечения:

- 1. Комплекс программ «Система автоматизированного проектирования APM WihMachihe»..
- 2. LibreOffice(бессрочно).
- 3. Microsoft-Windows(бессрочно).

Перечень используемых информационных справочных систем: Нет

10. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лекции	260 ГК	Компьютер преподавателя, видеопроектор, видеоэкран, маркерная доска.
Практические занятия	(021A, 265)ΓΚ	Стенды, макеты, установки для курса ТМ.

Программу разработали: д.т.н., профессор каф. КТ	Г.А. Борисов
ст. преподаватель каф. КТ	А.П. Капранов
Рабочая программа рассмотрена и одобрена «»20г. протокол №	на заседании кафедры КТ
Зав. кафедрой КТ	С.И. Гусев