МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Микро- и наноэлектроника»

«СОГЛАСОВАНО»

Директор института магистратуры и аспирантуры / О.А. Бодров « (14) » 66 20 % г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.ДВ.01.02 «Адаптивные материалы»

Направление подготовки 11.04.04 «Электроника и наноэлектроника»

Направленность (профиль) подготовки Микро- и наноэлектроника

> Уровень подготовки Магистратура

Квалификация выпускника - магистр

Формы обучения – очная, очно-заочная

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требований федерального государственного образовательного стандарта высшего образования по направлению подготовки (специальности) 11.04.04 «Электроника и наноэлектроника», утвержденного 22.09.2017 № 959

доцент кафедры МНЭЛ к.фм.н.	В.Г. Мишустин
Программа рассмотрена и одобрена на заседании кафедры МНЭЛ	
« <u>19</u> » <u>06</u> 2020г., протокол № 9	
Заведующий кафедрой МНЭЛ Дийн	В.Г. Литвинов

Разработчик

1. ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины является формирование базовых знаний и умений в области материалов, способных изменять свои физико-механические свойства при изменениях окружающей среды, в соответствии с Федеральным государственным образовательным стандартом, формирование у студентов способности к логическому мышлению, анализу и восприятию информации, посредством обеспечения этапов формирования компетенций, предусмотренных ФГОС, в части представленных ниже знаний, умений и навыков.

Задачи:

- формирование фундаментальных представлений о физической сущности процессов, протекающих в адаптивных материалах при изменениях окружающей среды;
 - обучение физическим принципам работы ряда электронных устройств;
- формирование навыков обоснованного выбора теоретических и экспериментальных методов и средств решения сформулированных задач;
- развитие навыков решения практических заданий на основе изученного теоретического материала;
- формирование умений обработки и анализа результатов решения теоретических задач;
- развитие способности предлагать новые идеи и подходы к решению инженерных задач, определять пути их решения и оценивать эффективность сделанного выбора.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина Б1.В.ДВ.01.02 «Адаптивные материалы» относится к дисциплинам вариативной части Блока 1 «Дисциплины (модули) основных профессиональных образовательных программ (далее – образовательных программ) магистратуры» «Микро- и наноэлектроника», «Промышленная электроника», «Электронные приборы и устройства» направления 11.04.04 «Электроника и наноэлектроника».

Дисциплина базируется на следующих дисциплинах, освоенных студентами по программе академического бакалавриата: «Материалы электронной техники» (Б1.О.23), Б1.В.01.03 «Физические основы микро- и наноэлектроники», Б1.В.03 «Физика наносистем», «Неупорядоченные полупроводники (Б1.В.ДВ.06.01)».

Для освоения дисциплины обучающийся должен:

знать: основные физические явления; основные факты, базовые концепции и модели физики адаптивных материалов; основные характеристики материалов, их применение в элементах электроники и наноэлектроники;

уметь: применять на практике основные приемы и программные средства обработки и представления данных в соответствии с задачей исследования характеристик и параметров адаптивных материалов;

владеть: базовыми навыками экспериментального исследования параметров и характеристик адаптивных материалов.

«Результаты обучения, полученные при освоении дисциплины, необходимы при изучении следующих дисциплин: Б1.В.04 «Управление свойствами наноматериалов и нано-

структур», Б1.В.05 «Фундаментальные основы физики наносистем и нанотехнологии», Б1.В.06 «Наноэлектроника» и при выполнении выпускной квалификационной работы.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО, ПООП (при наличии) по данному направлению подготовки, а также компетенций (при наличии), установленных университетом.

Рекомендуемые профессиональные компетенции выпускников и индикаторы их достижения (при наличии)

Задача ПД	Объект или область зна- ния	Код и наименование профессиональной компетенции	Код и наименование инди- катора достижения про- фессиональной компетен- ции	Обоснование (ПС, анализ опыта)					
	` * * /·		сро- и наноэлектроника						
Тип задач профессиональной деятельности: научно-исследовательский Обеспечен Обеспечение ПК-1 Способен ИД – 1 пк-1 29.006 Специ-									
ие полного	полного	анализировать	Знает современные	алист по про-					
цикла	цикла	состояние науч-	технические требования к	ектированию					
проектиро	проектирован	но-технической	выбору конструктивно-	систем в кор-					
вания	РИЯ	проблемы путем	технологического базиса	пусе					
топологиче	топологическ	подбора, изуче-	изделий микро- и нано-	40.058 Инже-					
ской	ой системы	ния и анализа	электроники.	нер-технолог					
системы	типа "система	литературных и	ИД – 2 пк-1	по производ-					
типа	в корпусе	патентных ис-	Умеет анализировать	ству изделий					
"система в		точников	литературные и патентные	микроэлек-					
корпусе			источники при разработке	троники					
			изделий микро-						
			Проведение модификации						
			свойств и измерений						
			параметров						
			наноматериалов и						
			наноструктур.						
			ИД – 3 пк-1						
			Владеет навыками						
			конструирования изделий						
			микро- и наноэлектроники						

Пистоп	Статтатт	ПИ 4 С	ип 1	40 104
Проведени	Специалист	ПК-4 Способен к	ИД-1 ПК-4	40.104.
e	по измерению	организации и	Знает способы	Специалист
модификац	параметров и	проведению	организации и проведе-	по измерению
ии свойств	модификации	экспериментальн	ния экспериментальных	параметров и
И	свойств	ых исследований	исследований.	модификации
измерений	наноматериал	с применением	ИД-2 ПК-4	свойств
параметро	ОВ И	современных	Умеет самостоятельно	наноматериал
В	наноструктур	средств и	проводить экспери-	ОВ И
наноматер		методов	ментальные исследова-ния	наноструктур.
иалов и			ИД-3 ПК-4	
нанострукт			Владеет навыками	
yp			проведения исследо-вания	
			с применением	
			современных средств и	
			методов	
		ПК-5 Способен	ИД-1 пк-5	
		делать научно-	Знает принципы прове-	
		обоснованные	дения анализа полноцен-	
		выводы по	ности и эффективности	
		результатам	экспериментальных	
		теоретических и	исследований.	
		экспериментальн	ИД-2 _{ПК-5}	
		•		
		ЫХ	, ,	
		исследований,	научные публикации на	
		давать	основе результатов ис-	
		рекомендации	следований.	
		ПО	ИД-3 ПК-5	
		совершенствова	Владеет навыками под-	
		нию устройств и	готовки заявок на	
		систем, готовить	изобретения	
		научные		
		публикации и		
		заявки на		
		изобретения		
Направленно	эсть (профиль), с	пециализация: Мик	сро- и наноэлектроника	
Тип задач пр	офессиональной	і деятельности: про	ектно-конструкторский	
		ПК-6 Способен	ИД-1 ПК-6	
		анализировать	Знает современные	
		состояние	технические требования к	
		научно-	выбору конструк-тивно-	
		технической	технологического базиса	
		проблемы путем	изделий микро- и	
		подбора,	наноэлектроники	
		изучения и	*****	
		анализа	Умеет анализировать	
		литературных и	литературные и патент-	
		патентных	ные источники при	
			разработке изделий микро-	
		источников	разраоотке изделии микро-	

и нано-электроники.
ИД-3 ПК-6
Владеет навыками конс-
труирования изделий
микро- и нано-
электроники.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1 Объем дисциплины по семестрам (курсам) и видам занятий в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость изучения дисциплины составляет 4 ЗЕ (144 часа).

Дисциплина реализуется в рамках части, формируемой участниками образовательных отношений, Блока 1 учебного плана ОПОП «Микро- и наноэлектроника»,»

Дисциплина изучается на 1 курсе во 2 семестре.

Вид учебной работы	Всего часов
Аудиторные занятия (всего)	42,35
В том числе:	
Лекции (ЛК)	16
Лабораторные работы (ЛР)	16
Практические занятия (ПЗ)	8
Консультации	2
Иная контактная работа (ИКР)	0,35
Самостоятельная работа (СР) (всего)	57
Контроль	44,65
Вид промежуточной аттестации (зачет, дифференцированный зачет, экзамен)	экзамен
Общая трудоемкость час	144
Зачетные Единицы Трудоемкости	4
Контактная работа (по учебным занятиям)	42,35

4.2 Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

		Общая Контактная работа обучающихтрудо- ся с преподавателем					Кон-			
No	Раздел дисциплины	емкость,	всего	ЛК	ЛР	ПЗ	ИКР	Кон-	троль	CP
		всего						суль-		
		часов						тации		
	Всего	144	42,35	16	16	8	0,35	2	44,65	57
1	Введение	1	1	1						
2	Классификация адаптивных материалов	8	2	1		1				6
3	Активные диэлектрики	25	13	2	10	1				12

4	Магнитные материалы	20	10	2	6	2				10
5	Особенности жидкого со-	10	2	2						8
	стояния вещества									
6	Вещества, сочетающие по-	8	4	2		2				4
	рядок и беспорядок									
7	Неупорядоченные твердые	9	3	2		1				6
	тела									
8	Биополимеры и живая ма-	6	2	2						4
	терия									
9	Наноматериалы и нано-	9	2	1		1				7
	технологии									
10	Заключение	1	1	1						
	ИКР	0,35	0,35				0,35			
	Экзамены и консультации	46,65	2					2	44,65	

4.3 Содержание дисциплины

4.3.1 Лекционные занятия

№	Темы лекционных занятий	Трудоем-	Формируемые	Форма
Π/Π	темы лекционных занятии	кость (час.)	компетенции	контроля
1	Введение. Предмет дисциплины и ее зада-	1	ПК-1, ПК-4,	экзамен
	чи. Основные этапы развития адаптивных.		ПК-5, ПК-6	
2	Классификация основных типов адаптив-	1	ПК-1, ПК-4,	экзамен
	ных материалов Особенности твердых тел,		ПК-5, ПК-6	
	жидкостей, жидких кристаллов, полимеров,			
	биологических структур.			
3	Классификация активных диэлектриков.	2	ПК-1, ПК-4,	экзамен
	Сегнетоэлектрики. Классификация сегнето-		ПК-5, ПК-6	
	электриков. Основные свойства. Механизм			
	спонтанной поляризации. Применение се-			
	гнетоэлектриков. Пьезоэлектрики. Пиро-			
	электрики. Электреты.			
4	Магнитные резонансы. Магнитные момен-	2	ПК-1, ПК-4,	экзамен
	ты атомов. Диамагнетики, парамагнетики.		ПК-5, ПК-6	
	Намагниченность, магнитная проницае-			
	мость. Магнитное упорядочение. Спонтан-			
	ная намагниченность. Обменное взаимодей-			
	ствие. Спиновые волны. Ферромагнетики,			
	антиферромагнетики, ферримагнетики. До-			
	менная структура, механизмы намагничи-			
	вания, гистерезис.		TTC 1 TTC 1	
5	Жидкость как агрегатное состояние веще-	2	ПК-1, ПК-4,	экзамен
	ства. Классификация жидкостей и типов		ПК-5, ПК-6	
	межмолекулярных взаимодействий. Тепло-			
	вое движение частиц в жидкостях. Кванто-			
	вые жидкости.	2	ПК 1 ПК 4	
6	Классификация сложных систем, сочетаю-	2	ПК-1, ПК-4,	экзамен
	щих порядок и беспорядок. Жидкие кри-		ПК-5, ПК-6	

	сталлы, сочетающие свойства упорядочен-			
	ных систем в одних направлениях со свой-			
	ствами жидкостей – в других направлениях.			
7	Неупорядоченные системы, ближний и	2	ПК-1, ПК-4,	экзамен
	дальний порядок. Неупорядоченные струк-		ПК-5, ПК-6	
	туры: диэлектрические стекла, аморфные			
	металлы, аморфные полупроводники, ме-			
	таллические стекла, спиновые стекла, жид-			
	кости.			
8	Особое место биополимеров и живой мате-	2	ПК-1, ПК-4,	экзамен
	рии среди непериодических систем.		ПК-5, ПК-6	
9	Роль свободных и внутренних поверхностей.	1	ПК-1, ПК-4,	экзамен
	Квантовые эффекты. Материалы со специ-		ПК-5, ПК-6	
	альными механическими свойствами. Адап-			
	тивные материалы. Перспективы и тенденции			
	разработки современных технологий и мате-			
	риалов.			
10	Заключение. Обобщение современных до-	1	ПК-1, ПК-4,	экзамен
	стижений и анализ проблем в области адап-		ПК-5, ПК-6	
	тивных материалов.			

4.3.2 Лабораторные занятия

No	Тематика практических занятий	Трудоем-	Формируемые	Форма
Π/Π	-	кость (час.)	компетенции	контроля
1	Исследование явления электрической поля-	2	ПК-1, ПК-4,	Тестовые зада-
	ризации в адаптивных материалах		ПК-5, ПК-6	ния, экзамен
2	Изучение свойств активных диэлектриков.	4	ПК-1, ПК-4,	Тестовые зада-
	Сегнетоэлектрики и области их применения		ПК-5, ПК-6	ния, экзамен
	в электронике			
3	Изучение свойств активных диэлектриков.	4	ПК-1, ПК-4,	Тестовые зада-
	Пьезоэлектрики и области их применения в		ПК-5, ПК-6	ния, экзамен
	электронике			
4	Исследование параметров и характеристик	4	ПК-1, ПК-4,	Тестовые зада-
	ферромагнитных материалов в переменном		ПК-5, ПК-6	ния, экзамен
	электромагнитном поле			
5	Исследование параметров и характеристик	2	ПК-1, ПК-4,	Тестовые зада-
	ферритов на высоких частотах		ПК-5, ПК-6	ния, экзамен

4.3.3 Практические занятия

$N_{\underline{0}}$	Тематика практических занятий	Трудоем-	Формируемые	Форма
Π/Π		кость (час.)	компетенции	контроля
1	Классификация адаптивных материалов	1	ПК-1, ПК-4,	Тестовые зада-
			ПК-5, ПК-6	ния, экзамен
2	Активные диэлектрики	1	ПК-1, ПК-4,	Тестовые зада-
	-		ПК-5, ПК-6	ния, экзамен
3	Магнитные материалы	2	ПК-1, ПК-4,	Тестовые зада-
			ПК-5, ПК-6	ния, экзамен
4	Вещества, сочетающие порядок и беспоря-	2	ПК-1, ПК-4,	Тестовые зада-

	док		ПК-5, ПК-6	ния, экзамен
5	Неупорядоченные твердые тела	1	ПК-1, ПК-4,	Тестовые зада-
			ПК-5, ПК-6	ния, экзамен
6	Наноматериалы и нанотехнологии	1	ПК-1, ПК-4,	Тестовые зада-
			ПК-5, ПК-6	ния, экзамен

4.3.4 Самостоятельная работа

No	4.5.4 Camoстоятельная расота	Трудоем-	Формируемые	Форма
п/п	Тематика самостоятельной работы	кость (час.)	компетенции	контроля
1.	Классификация основных адаптивных ма-	6	ПК-1, ПК-4,	экзамен
1.	териалов. Особенности твердых тел, жидко-	_	ПК 1, ПК 4,	SKSamen
	стей, жидких кристаллов, полимеров, био-		11IX-3, 11IX-0	
	логических структур.			
2.	Классификация активных диэлектриков.	12	ПК-1, ПК-4,	DICOONOU
۷.	Сегнетоэлектрики. Классификация сегнето-		ПК-1, ПК-4, ПК-5, ПК-6	экзамен
	электриков. Основные свойства. Механизм		11K-3, 11K-0	
	спонтанной поляризации. Применение се-			
	гнетоэлектриков. Пьезоэлектрики. Пиро-			
	*			
3.	электрики. Электреты.	10	ПК-1, ПК-4,	OTCOONAGE
٥.	Магнитные резонансы. Магнитные моменты атомов. Диамагнетики, парамагнетики.	10	ПК-1, ПК-4, ПК-5, ПК-6	экзамен
			11IN-3, 11IN-0	
	Намагниченность, магнитная проницае-			
	мость. Магнитное упорядочение. Спонтанная намагниченность. Обменное взаимодей-			
	ствие. Спиновые волны. Ферромагнетики,			
	антиферромагнетики, ферримагнетики. До-			
	менная структура, механизмы намагничи-			
4.	вания, гистерезис.	8	ПУ 1 ПУ 4	DIVIDANTON
4.	Жидкость как агрегатное состояние вещества. Классификация жилкостей и типов	_	ПК-1, ПК-4, ПК-5, ПК-6	экзамен
	ства. Классификация жидкостей и типов		11IN-3, 11IN-0	
-	межмолекулярных.	4	ПУ 1 ПУ 4	DIEDONACIA
5.	Жидкие кристаллы, сочетающие свойства	4	ПК-1, ПК-4,	экзамен
	упорядоченных систем в одних направле-		ПК-5, ПК-6	
	ниях со свойствами жидкостей – в других			
6	направлениях.	6	пи 1 пи 4	274227
6.	Неупорядоченные системы, ближний и		ПК-1, ПК-4,	экзамен
	дальний порядок. Неупорядоченные струк-		ПК-5, ПК-6	
	туры: диэлектрические стекла, аморфные			
	металлы, аморфные полупроводники, ме-			
7	таллические стекла.	4	THE 1 THE 4	
7.	Особое место биополимеров и живой мате-	4	ПК-1, ПК-4,	экзамен
0	рии среди непериодических систем.	7	ПК-5, ПК-6	
8.	Нанокомпозиционные, нанопористые и	-	ПК-1, ПК-4,	экзамен
	функциональные материалы. Материалы со		ПК-5, ПК-6	
	специальными механическими свойствами.			
	Адаптивные материалы.			

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧ-НОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Оценочные материалы приведены в приложении к рабочей программе дисциплины (см. документ «Оценочные материалы по дисциплине «Адаптивные материалы»»).

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1 Основная литература

- 1. Материаловедение. Учеб. пособие. Сост. С.П. Вихров, Т.А. Холомина. Под ред. Ю.М. Солдака. Рязань: РГРТУ, 2006. 160 с.
- 2. Сорокин, В.С. Материалы и элементы электронной техники. Активные диэлектрики, магнитные материалы, элементы электронной техники [Электронный ресурс]: учеб. пособие / В.С. Сорокин, Б.Л. Антипов, Н.П. Лазарева. Электрон. дан. Санкт-Петербург: Лань, 2016. 384 с. Режим доступа: https://e.lanbook.com/book/71735.
- 3. Марков В.Ф. Материалы современной электроники [Электронный ресурс]: учебное пособие / В.Ф. Марков, Х.Н. Мухамедзянов, Л.Н. Маскаева. Электрон. текстовые данные. Екатеринбург: Уральский федеральный университет, 2014. 272 с. 978-5-7996-1186-6. Режим доступа: http://www.iprbookshop.ru/69626.html.
- 4. Богородицкий Н.П., Пасынков В.В., Тареев Б.М. Электротехнические материалы. Л.: Энергоатомиздат. 1985.- 336с.
- 5. Серебряков, А.С. Электротехническое материаловедение. Проводниковые, полупроводниковые и магнитные материалы [Электронный ресурс]: учеб. пособие Электрон. дан. Москва: УМЦ ЖДТ, 2008. 372 с. Режим доступа: https://e.lanbook.com/book/59200.

6.2 Дополнительная литература

- 1. Бондаренко, Г.Г. Основы материаловедения [Электронный ресурс]: учеб. / Г.Г. Бондаренко, Т.А. Кабанова, В.В. Рыбалко. Электрон. дан. Москва: Издательство "Лаборатория знаний", 2015. 763 с. Режим доступа: https://e.lanbook.com/book/66294.
- 2. Вихров С.П., Холомина Т.А. Свойства и применение металлов и полупроводников. Учебное пособие.- Рязань: РГРТА, 2004. 84 с.
- 3. Холомина Т.А., Зубков М.В. Свойства и применение диэлектриков и магнитных материалов: учеб. пособие.- Рязан. гос. радиотехн. университет. Рязань, 2015. 48 с.
- 4. Материалы с особыми магнитными и электрическими свойствами [Электронный ресурс]: учеб. пособие Электрон. дан. Москва: МГТУ им. Н.Э. Баумана, 2009. 54 с. Режим доступа: https://e.lanbook.com/book/52467.
- 5. Стародубцев, Ю.Н. Магнитомягкие материалы. Энциклопедический словарьсправочник [Электронный ресурс]: слов.-справ. Электрон. дан. Москва: Техносфера, 2011. 664 с. Режим доступа: https://e.lanbook.com/book/73006.
- 6. Айвазов А.А., Будагян В.Г., Вихров С.П., Попов А.И. Неупорядоченные полупроводники.— М.: Высшая школа, 1995.
- 7. Попов А.И. Физика и технология неупорядоченных полупроводников. М.: Изд-во МЭИ, 2008. 272 с.: ил.
 - 8. Наноматериалы и методы их исследования. Том 2. Рязань: РГРТУ, 2010. 256 с.
- 9. Успехи наноинженерии [Электронный ресурс]: электроника, материалы, структу-ры / Дэвис Джайлс [и др.]. Электрон. текстовые данные. М.: Техносфера, 2011. 512 с. 978-5-94836-292-2. Режим доступа: http://www.iprbookshop.ru/58869.html.

10. Нанотехнологии в электронике-3.1 [Электронный ресурс] / И.И. Амиров [и др.]. – Электрон. текстовые данные. – М. : Техносфера, 2016. – 480 с. –978-5-94836-423-0. – Режим доступа: http://www.iprbookshop.ru/58864.html

6.3 Нормативные правовые акты

6.4 Периодические издания

6.5 Методические указания к практическим занятиям/лабораторным занятиям

- 1. А.П. Авачёв, М.В. Зубков, С.А. Кострюков, В.Г. Мишустин Технология материалов электронной техники // Методические указания к лабораторным работам. Часть 1. Рязань. РГРТУ. 2012. 24 с
- 2. С.И. Мальченко, В.Г. Мишустин, В.Н. Тимофеев Материалы и компоненты радиоэлектронных средств // Методические указания к лабораторным работам. Рязань. РГРТУ. 2012. 84 с.
- 3. Исследование свойств ферромагнитных материалов. Методические указания к лабораторным работам / Сост.: С.И. Мальченко, В.Г. Мишустин, Т.А. Холомина. Рязан. гос. радиотехн. университет.- Рязань, 2013.- 16 с.
- 4. А.П. Авачёв, Ю.В. Воробьева, В.Г. Мишустин Физико-химические основы технологических процессов микро- и наноэлектроники // Методические указания к лабораторным работам. Часть 1. Рязань. РГРТУ. 2011. 48 с.

6.6 Методические указания к курсовому проектированию (курсовой работе) и другим видам самостоятельной работы

Изучение дисциплины «Адаптивные материалы» проходит во 2 семестре 1 года обучения. Основные темы дисциплины осваиваются в ходе аудиторных занятий, однако важная роль отводится и самостоятельной работе студентов. Самостоятельное изучение тем учебной дисциплины способствует: закреплению знаний, умений и навыков, полученных в ходе аудиторных занятий; углублению и расширению знаний по отдельным вопросам и темам дисциплины; освоению умений прикладного и практического использования полученных знаний; освоению умений по исследованию характеристик и параметров интеллектуальных материалов и структур в электронике.

Самостоятельная работа включает в себя следующие этапы:

- изучение теоретического материала (работа над конспектом лекции);
- самостоятельное изучение дополнительных информационных ресурсов (доработка конспекта лекции);
 - выполнение тестовых заданий текущего контроля успеваемости;
 - итоговая аттестация по дисциплине текущий контроль (подготовка к экзамену).

Работа над конспектом лекции: лекции — основной источник информации по предмету, позволяющий не только изучить материал, но и получить представление о наличии других источников, сопоставить особенности практического применения получаемых знаний. Лекции предоставляют возможность «интерактивного» обучения, когда есть возможность задавать преподавателю вопросы и получать на них ответы. Поэтому рекомендуется в день, предшествующий очередной лекции, прочитать конспекты двух предшествующих лекций, обратив особое внимание на содержимое последней лекции.

Доработка конспекта лекции с применением учебника, методической литературы, дополнительной литературы, интернет-ресурсов: позволяет самостоятельно изучить особенности применения интеллектуальных материалов и структур в электронике, которые не рассмотрены во время лекций и лабораторных занятий. Кроме того, рабочая программа предполагает рассмотрение некоторых относительно несложных тем только во время самостоятельных занятий, без чтения лектором.

<u>Подготовка к практическому занятию:</u> состоит в теоретической подготовке (изучение конспекта лекций и дополнительной литературы), самостоятельном решении задач из методических пособий.

Подготовка к зачету, экзамену. В конце семестра при подготовке к аттестации студент должен повторить изученный в семестре материал и в ходе повторения обобщить его, сформировав цельное представление о нем. Следует иметь в виду, что на подготовку к промежуточной аттестации времени бывает очень мало, поэтому начинать эту подготовку надо заранее, не дожидаясь последней недели семестра, при этом основной вид подготовки — «свертывание» большого объема информации в компактный вид, а также тренировка в ее «развертывании» (примеры к теории, выведение одних закономерностей из других и т.д.). Надо также правильно распределить силы, не только готовясь к самому экзамену, но и позаботившись о допуске к нему (это добросовестное посещение занятий, выполнение в назначенный срок и активность при выполнении тестовых заданий по дисциплине). Следует всегда помнить, что залог успеха студента в учебе — планомерная работа в течение всего семестра и своевременное выполнение всех видов работы.

7 ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОН-НОЙ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1. Сайт кафедры микро- и наноэлектроники РГРТУ: http://www.rsreu.ru/faculties/fe/kafedri/mnel; https://disk.rsreu.ru.
- 2. Система дистанционного обучения $\Phi \Gamma EOY$ ВО «РГРТУ», режим доступа. http://cdo.rsreu.ru/
 - 3. Единое окно доступа к образовательным ресурсам: http://window.edu.ru/
 - 4. Интернет Университет Информационных Технологий: http://www.intuit.ru/
- 5. Электронно-библиотечная система «IPRbooks» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный, доступ из сети Интернет по паролю. URL: https://iprbookshop.ru/.
- 6. Электронно-библиотечная система издательства «Лань» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный, доступ из сети Интернет по паролю. URL: https://www.e.lanbook.com
- 7. Электронная библиотека РГРТУ [Электронный ресурс]. Режим доступа: из корпоративной сети РГРТУ по паролю. URL: http://elib.rsreu.ru/

8 ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. Операционная система Windows XP (Microsoft Imagine, номер подписки 700102019, бессрочно);
- 2. Операционная система Windows XP (Microsoft Imagine, номер подписки ID 700565239, бессрочно);
- 3. Kaspersky Endpoint Security (Коммерческая лицензия на 1000 компьютеров №2304-180222-115814-600-1595, срок действия с 25.02.2018 по 05.03.2019);
 - 4. LibreOffice

- 5. Adobe acrobat reader
- 6. Среда инженерно-графического программирования LabView 9
- 7. Справочная правовая система «Консультант Плюс» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для освоения дисциплины необходимы следующие материально-технические ресурсы:

- 1) аудитория для проведения лекционных и практических занятий, групповых и индивидуальных консультаций, текущего контроля, промежуточной аттестации, оборудованная маркерной (меловой) доской;
- 2) аудитория для самостоятельной работы, оснащенная индивидуальной компьютерной техникой с подключением к локальной вычислительной сети и сети Интернет.

No	Наименование специальных помещений и помещений для самостоятельной работы	Перечень специализированного оборудо- вания		
1	Учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, № 132 главного учебного корпуса	Специализированная мебель (40 посадочных мест) ПК Intel Celeron 1,8 ГГц — 1 шт. Проектор Sanyo PLC-XP4 Экран Аудиторная доска Возможность подключения к сети «Интернет» проводным и беспроводным способом и обеспечением доступа в электронную информационнообразовательную среду РГРТУ.		
2	Помещение для самостоятельной работы, № 501, к 2 лабораторный корпус	Магнитно-маркерная доска; ПК Intel Celeron CPV J1800 – 25 шт; Возможность подключения к сети «Интернет» проводным и беспроводным способом и обеспечением доступа в электронную информационнообразовательную среду РГРТУ.		
4	Аудитория для хранения и ремонта оборудования, № 343 главного учебного корпуса	2 компьютера: ПЭВМ на базе CPU E5300 Dual Core 2,6 GHz, ПЭВМ E2200 ASUS, принтер hp 1010,копир. аппарат Canon 5 мест		

Пn	OFD	амму	COC	тави	п.
1 IP	or b	culvilly y	COC	labri	JI.

к.ф.-м.н., доцент, доцент каф. МНЭЛ Aller

(Мишустин В.Г.)