МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Микро- и наноэлектроника»

«СОГЛАСОВАНО»

Директор института магистратуры и аспирантуры / О.А. Бодров «12 — 06 — 20 20 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.01 «Микро- и наносенсоры»

Направление подготовки 11.04.04 «Электроника и наноэлектроника»

Направленность (профиль) подготовки Микро- и наноэлектроника

> Уровень подготовки Магистратура

Квалификация выпускника – магистр

Формы обучения – очная, очно-заочная

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требований федерального государственного образовательного стандарта высшего образования направлению ПО подготовки (специальности) 11.04.04 «Электроника и наноэлектроника»,

Разработчики Доц. каф. МНЭЛ Н.В. Вишняков к.т.н. Программа рассмотрена и одобрена на заседании кафедры МНЭЛ «<u>19</u>» <u>06</u> 2020 г., протокол № 9 Заведующий кафедрой МНЭЛ Money

В.Г. Литвинов

утвержденного 22.09.2017 № 959

д.ф.-м.н., доцент

1. ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины является формирование теоретических знаний и практических навыков в области анализа общих физических принципов преобразования информации, актуальных проблем, фундаментальных принципов и особенностей работы, устройства и способов применения микро- и наносенсоров в технических системах в соответствии с Федеральным государственным образовательным стандартом; формирование у студентов способности к логическому мышлению, анализу и восприятию информации посредством обеспечения этапов формирования компетенций, предусмотренных ФГОС, в части представленных ниже знаний, умений и навыков.

Задачи:

- изучение особенностей физических взаимодействий на наноразмерных масштабах и свойств наноструктурированных материалов, микро- и наносистем;
- расширение научного кругозора и эрудиции магистрантов в вопросах преобразования измеряемой физической величины в электрический информационный сигнал;
- характеризации и технологических аспектов изготовления микро- и наносенсоров и особенности их применения в технике и биомедицине на базе углубленных представлений о квантоворазмерных объектах, МЭМС и НЭМС;
 - обучение навыкам исследовательской и инженерной работы.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина Б1.В.01 «Микро- и наносенсоры» относится к части, формируемой участниками образовательных отношений Блока №1 основной профессиональной образовательной программы (далее — образовательной программы) и изучается магистрантами направленности (профиля) подготовки академической магистратуры «Микро- и наноэлектроника» направления 11.04.04 «Электроника и наноэлектроника».

Дисциплина базируется на следующих дисциплинах, освоенных студентами по программам академического бакалавриата: «Процессы микро- и нанотехнологии (Б1.В.05), «Метрология, стандартизация и технические измерения» (Б1.О.14), «Физические основы микро- и наноэлектроники» (Б1.О.25), «Современные твердотельные датчики» (Б1.В.ДВ.03.01), «Конструирование микро- и наносистем» (Б1.В.06) и магистратуры: «Методы анализа наносистем» (Б1.О.03).

Для освоения дисциплины обучающийся должен:

Знать: основные физические принципы, эффекты и законы, лежащие в основе работы сенсорных систем.

Уметь: применять на практике основные приемы и программные средства обработки и представления экспериментальных данных в соответствии с методами и задачами микро- и наносенсорики.

Владеть: навыками разработки нормативно-технической документации, грамотным физическим научным языком, международной системой единиц измерений физических величин (СИ) при физических расчетах и формулировке физических закономерностей и навыками измерения основных физических величин.

Результаты обучения, полученные при освоении дисциплины, необходимы при выполнении научно-исследовательской работы, при прохождении технологической (проектнотехнологической) практики, преддипломной практики и при выполнении выпускной квалификационной работы.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО, ПООП (при наличии) по данному направлению подготовки, а также компетенций (при наличии), установленных университетом.

Универсальные компетенции выпускников и индикаторы их достижения

Категория (группа) универсальных компетенций	иверсальных универсальной Код и наименование индикатора д		
Системное и крити-	УК-1	ИД-1 ук-1	
ческое мышление	Способен осуществлять критический анализ проблемных ситуаций на основе системного подхода, вырабатывать стратегию действий	Знать: методы системного и критического анализа; методики разработки стратегии действий для выявления и решения проблемной ситуации. ИД-2 ук-1	

Профессиональные компетенции выпускников и индикаторы их достижения

Задача ПД	Объект или область зна- ния	Код и наимено- вание професси- ональной компе-	Код и наименование инди- катора достижения про- фессиональной компетен-	Обоснование (ПС, анализ опыта)
	кин	тенции	ции	опыта)
Направленно	ость (профиль), с	пециализация: Мин	сро- и наноэлектроника	
Тип з	адач профессион	альной деятельност	ги: проектно онструкторский	
Обеспечен	Специалист	ПК-6	ИД-1 _{ПК-6}	29.006
ие полного	по проекти-	Способен	Знает современные техни-	Специалист
цикла	рованию си-	анализировать	ческие требования к выбо-	по проекти-
проектиро	стем в корпу-	состояние	ру конструктивно-	рованию си-
вания	ce	научно-	технологического базиса	стем в корпу-
топологиче		технической	изделий микро- и нано-	ce
ской		проблемы путем	электроники	
системы		подбора,	ИД-2 ПК-6	
типа		изучения и	Умеет	
"система в		анализа	анализировать	
корпусе		литературных и	литературные и патентные	
		патентных	источники при разработке	
		источников	изделий микро- и нано-	
			электроники.	

	ипо	
	ИД-3 _{ПК-6}	
	Владеет навыками	
	конструирования изделий	
	микро- и	
	наноэлектроники.	
ПК-7	ИД-1 _{ПК-7}	
Готов	Знает схемы и устройства	
определять цели,	изделий микро- и нано-	
осуществлять	электроники различного	
постановку	функционального назна-	
задач	чения.	
проектирования	ИД-2 _{ПК-7}	
электронных	Умеет подготавливать	
приборов, схем и	технические задания на	
устройств	выполнение проектных	
различного	работ	
функциональног	ИД-3 _{ПК-7} Владеет навыка-	
о назначения,	ми разработки архитекту-	
подготавливать	ры изделий микро- и нано-	
технические	электроники	
задания на	SHERT POINTRI	
выполнение		
проектных работ		
ПК-8	TATT 1	
	ИД-1 _{ПК-8}	
Способен	Знает принципы подготов-	
проектировать	ки технических заданий на	
устройства,	современные электронные	
приборы и	устройства.	
системы	ИД-2 _{ПК-8}	
электронной	Умеет разрабатывать при-	
техники с	боры и системы электрон-	
учетом заданных	ной техники.	
требований	ИД-3 пк-8	
	Владеет навыками разра-	
	ботки рабочей топологии и	
	плана технологии монтажа	
	и сборки электронной	
	компонентной базы изде-	
	лий микро- и наноэлек-	
	троники	

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1 Объем дисциплины по семестрам (курсам) и видам занятий в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость изучения дисциплины составляет 5 ЗЕ (180 часов).

Дисциплина реализуется в рамках части, формируемой участниками образовательных отношений Блока 1 образовательной программы и изучается магистрантами направленности (профиля) подготовки академической магистратуры «Микро- и наноэлектроника» направления 11.04.04 «Электроника и наноэлектроника».

Дисциплина изучается на 1 курсе в 2 семестре.

Вид учебной работы	Всего часов
Аудиторные занятия (всего)	50,65
В том числе:	
Лекции	16,0
Практические занятия (ПЗ)	16,0
Лабораторные работы (ЛР)	16,0
Консультации	2,0
Иная контакт6ная работа (ИКР)	0,65
Самостоятельная работа (СР) (всего)	69,3
Курсовая работа (проект) (КРП)	15,7
Контроль	44,35
Вид промежуточной аттестации (зачет, дифференцированный зачет, экзамен)	экзамен
Общая трудоемкость час	180
Зачетные Единицы Трудоемкости	5
Контактная работа (по учебным занятиям)	50,65

4.2 Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

		Общая	Кон	тактн	-		•	щих-			
		трудо-			_		телем	1	Кон-		
№	Раздел дисциплины	емкость,	все-	Лек-	ЛР	П3	ИКР	Кон-	троль	КРП	CP
		всего ча-	го	ции				суль-	троль		
		сов						тации			
	Всего	180	50,65	16	16	16	0,65	2	44,35	15,7	69,3
1	Введение. Основные	4,3	2	1		1					2,3
	физические принципы										
	и законы, лежащие в										
	основе работы микро										
	и наносенсоров										
2	Метрологические ха-	14	4	2		2					10
	рактеристики датчи-										
	ков										
3	Наносенсоры на кван-	17	8	2	4	2					9
	товых точках										
4	Нанопровода и угле-	17	8	2	4	2					9
	родные нанотрубки										
5	Ультратонкие пленки,	17	8	2	4	2					9
	квантовые ямы										

6	Сенсоры на основе микроэлектромеханических (МЭМС) и наноэлектромеханических (НЭМС) систем	17	8	2	4	2					9
7	Нанобиосенсоры	13	4	2		2					9
8	Новые технологии в производстве современных микро- и наносенсоров (датчиков)	14	4	2		2					10
9	Заключение. «Дорожные карты» развития микро- наносенсоров	4	2	1		1					2
	ИКР	0,65	0,65				0,65				
	Курсовая работа (проект)	15,7								15,7	
	Экзамены и консультации	46,35	2					2	44,35		

4.3 Содержание дисциплины

4.3.1 Лекционные занятия

No	Темы лекционных занятий	Трудоем-	Формируемые	Форма
Π/Π	темы лекционных занятии	кость (час.)	компетенции	контроля
1	Введение. Основные физические принципы и	1	УК-1; ПК-6;	экзамен
	законы, лежащие в основе работы микро и		ПК-7; ПК-8	
	наносенсоров			
2	Метрологические характеристики датчиков	2	УК-1; ПК-6;	экзамен
			ПК-7; ПК-8	
3	Наносенсоры на квантовых точках	2	УК-1; ПК-6;	экзамен
			ПК-7; ПК-8	
4	Нанопровода и углеродные нанотрубки	2	УК-1; ПК-6;	экзамен
			ПК-7; ПК-8	
5	Ультратонкие пленки, квантовые ямы	2	УК-1; ПК-6;	экзамен
			ПК-7; ПК-8	
6	Сенсоры на основе микроэлектромеханиче-	2	УК-1; ПК-6;	экзамен
	ских (МЭМС) и наноэлектромеханических		ПК-7; ПК-8	
	(НЭМС) систем		·	
7	Нанобиосенсоры	2	УК-1; ПК-6;	экзамен
	-		ПК-7; ПК-8	
8	Новые технологии в производстве современ-	2	УК-1; ПК-6;	экзамен
	ных микро- и наносенсоров (датчиков)		ПК-7; ПК-8	
9	Заключение. «Дорожные карты» развития	1	УК-1; ПК-6;	экзамен
	микро- наносенсоров		ПК-7; ПК-8	

4.3.2 Практические занятия

$N_{\underline{0}}$	Темы лекционных занятий	Трудоем-	Формируемые	Форма
Π/Π	темы лекционных занятии	кость (час.)	компетенции	контроля
1	Введение. Основные физические принципы и	1	УК-1; ПК-6;	экзамен
	законы, лежащие в основе работы микро и		ПК-7; ПК-8	
	наносенсоров			
2	Метрологические характеристики датчиков	2	УК-1; ПК-6;	экзамен
			ПК-7; ПК-8	
3	Наносенсоры на квантовых точках	2	УК-1; ПК-6;	экзамен
			ПК-7; ПК-8	
4	Нанопровода и углеродные нанотрубки	2	УК-1; ПК-6;	экзамен
			ПК-7; ПК-8	
5	Ультратонкие пленки, квантовые ямы	2	УК-1; ПК-6;	экзамен
			ПК-7; ПК-8	
6	Сенсоры на основе микроэлектромеханиче-	2	УК-1; ПК-6;	экзамен
	ских (МЭМС) и наноэлектромеханических		ПК-7; ПК-8	
	(НЭМС) систем			
7	Нанобиосенсоры	2	УК-1; ПК-6;	экзамен
	-		ПК-7; ПК-8	
8	Новые технологии в производстве современ-	2	УК-1; ПК-6;	экзамен
	ных микро- и наносенсоров (датчиков)		ПК-7; ПК-8	
9	Заключение. «Дорожные карты» развития	1	УК-1; ПК-6;	экзамен
	микро- наносенсоров		ПК-7; ПК-8	

4.3.3 Лабораторные работы

$N_{\underline{0}}$	Тематика практических занятий	Трудоем-	Формируемые	Форма
Π/Π		кость (час.)	компетенции	контроля
1	Пироэлектрический датчик температуры	4	УК-1; ПК-6;	экзамен
			ПК-7; ПК-8	
2	Терморезистивный анемометр	4	УК-1; ПК-6;	экзамен
			ПК-7; ПК-8	
3	Акустический датчик	4	УК-1; ПК-6;	экзамен
			ПК-7; ПК-8	
4	Тензодатчик	4	УК-1; ПК-6;	экзамен
			ПК-7; ПК-8	

4.3.4 Самостоятельная работа

$N_{\underline{0}}$	Тематика самостоятельной работы	Трудоем-	Формируемые	Форма
Π/Π	тематика самостоятельной расоты	кость (час.)	компетенции	контроля
1.	Введение. Основные физические принципы и	2,3	УК-1; ПК-6;	экзамен
	законы, лежащие в основе работы микро и		ПК-7; ПК-8	
	наносенсоров			
2.	Метрологические характеристики датчиков	10	УК-1; ПК-6;	экзамен
			ПК-7; ПК-8	
3.	Наносенсоры на квантовых точках	9	УК-1; ПК-6;	экзамен
			ПК-7; ПК-8	
4.	Нанопровода и углеродные нанотрубки	9	УК-1; ПК-6;	экзамен
			ПК-7; ПК-8	

5.	Ультратонкие пленки, квантовые ямы	9	УК-1; ПК-6;	экзамен
			ПК-7; ПК-8	
6.	Сенсоры на основе микроэлектромеханиче-	9	УК-1; ПК-6;	экзамен
	ских (МЭМС) и наноэлектромеханических		ПК-7; ПК-8	
	(НЭМС) систем			
7	Нанобиосенсоры	9	УК-1; ПК-6;	экзамен
			ПК-7; ПК-8	
8	Новые технологии в производстве современ-	10	УК-1; ПК-6;	экзамен
	ных микро- и наносенсоров (датчиков)		ПК-7; ПК-8	
9	Заключение. «Дорожные карты» развития	2	УК-1; ПК-6;	экзамен
	микро- наносенсоров		ПК-7; ПК-8	

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Оценочные материалы приведены в приложении к рабочей программе дисциплины (см. документ «Оценочные материалы по дисциплине Б1.В.01 «Микро- и наносенсоры»).

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1 Основная учебная литература

- 1) Шишкин, Г.Г. Наноэлектроника. Элементы, приборы, устройства [Электронный ресурс]: учеб. пособие / Г.Г. Шишкин, И.М. Агеев. Электрон. дан. Москва: Издательство "Лаборатория знаний", 2015. 411 с. Режим доступа: https://e.lanbook.com/book/66208
- 2) Физико-технические основы микро- и наноустройств [Электронный ресурс]: учебное пособие / . Электрон. текстовые данные. Самара: PEABU3, 2010. 60 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/10148.html
- 3) Датчики [Электронный ресурс]: справочное пособие / В.М. Шарапов [и др.]. Электрон. текстовые данные. М. : Техносфера, 2012. 624 с. 978-5-94836-316-5. Режим доступа: http://www.iprbookshop.ru/16974.html
- 4) Нанотехнология: физика, процессы, диагностика, приборы [Электронный ресурс]: монография / А.В. Афанасьев [и др.]. Электрон. дан. Москва: Физматлит, 2006. 552 с. Режим доступа: https://e.lanbook.com/book/59436
- 5) Смирнов, Ю.А. Основы нано- и функциональной электроники [Электронный ресурс] : учеб. пособие / Ю.А. Смирнов, С.В. Соколов, Е.В. Титов. Электрон. дан. Санкт-Петербург: Лань, 2013. 320 с. Режим доступа: https://e.lanbook.com/book/5855.

6.2 Дополнительная учебная литература

- 1) Ахмеджанов Р.А. Физические основы получения информации [Электронный ресурс]: учебное пособие / Р.А. Ахмеджанов, А.И Чередов. Электрон. текстовые данные. М.: Учебно-методический центр по образованию на железнодорожном транспорте, 2013. 212 с. 978-5-9994-0078-9. Режим доступа: http://www.iprbookshop.ru/26844.html
- 2) Архипов, А.М. Датчики Freescale Semiconductor [Электронный ресурс] / А.М. Архипов, В.С. Иванов, Д.И. Панфилов. Электрон. дан. Москва: ДМК Пресс, 2010. 184 с. Режим доступа: https://e.lanbook.com/book/60998

- 3) Электроакустические преобразователи [Электронный ресурс] / В.М. Шарапов [и др.]. Электрон. текстовые данные. М. : Техносфера, 2013. 296 с. 978-5-94836-357-8. Режим доступа: http://www.iprbookshop.ru/31881.html
- 4) Шебалкова Л.В. Микроволновые и ультразвуковые сенсоры [Электронный ресурс] : учебное пособие / Л.В. Шебалкова, В.Н. Легкий, В.Б. Ромодин. Электрон. текстовые данные. Новосибирск: Новосибирский государственный технический университет, 2015. 172 с. 978-5-7782-2586-2. Режим доступа: http://www.iprbookshop.ru/45108.html
- 5) Марукович Е.И. Бесконтактная термометрия [Электронный ресурс] / Е.И. Марукович, А.П. Марков, С.С. Сергеев. Электрон. текстовые данные. Минск: Белорусская наука, 2014. 252 с. 978-985-08-1681-8. Режим доступа: http://www.iprbookshop.ru/29421.html
- 6) Легкий В.Н. Оптоэлектронные элементы и устройства систем специального назначения [Электронный ресурс] : учебник / В.Н. Легкий, Б.В. Галун, О.В. Санков. Электрон. текстовые данные. Новосибирск: Новосибирский государственный технический университет, 2011. 455 с. 978-5-7782-1777-5. Режим доступа: http://www.iprbookshop.ru/47705.html
- 7) Баран Е.Д. Измерения в LabVIEW [Электронный ресурс] : учебное пособие / Е.Д. Баран, Ю.В. Морозов. Электрон. текстовые данные. Новосибирск: Новосибирский государственный технический университет, 2010. 162 с. 978-5-7782-1428-6. Режим доступа: http://www.iprbookshop.ru/45372.html
- 8) Сергеев А.Г. Нанометрология [Электронный ресурс]: монография / А.Г. Сергеев. Электрон. текстовые данные. М. : Логос, 2012. 416 с. 978-5-98704-494-0. Режим доступа: http://www.iprbookshop.ru/9122.html.

6.3 Нормативные правовые акты

6.4 Периодические издания

6.5 Методические указания к практическим занятиям/лабораторным занятиям

- 1) Микро- наносенсоры: методические указания к лабораторной работе № 1 / Рязан. гос. радиотехн. ун-т; сост.: Н.В. Вишняков, В.В. Гудзев, А.В. Ермачихин, Н.Б. Рыбин, Н.М. Толкач. Рязань, 2016. 12 с.
- 2) Микро- наносенсоры: методические указания к лабораторной работе № 2 / Рязан. гос. радиотехн. ун-т; сост.: Н.В. Вишняков, В.В. Гудзев, А.В. Ермачихин, Н.Б. Рыбин, Н.М. Толкач. Рязань, 2016. 12 с.
- 3) Микро- наносенсоры: методические указания к лабораторной работе № 3 / Рязан. гос. радиотехн. ун-т; сост.: Н.В. Вишняков, В.В. Гудзев, А.В. Ермачихин, Н.Б. Рыбин, Н.М. Толкач. Рязань, 2016. 12 с.
- 4) Микро- наносенсоры: методические указания к лабораторной работе № 4 / Рязан. гос. радиотехн. ун-т; сост.: Н.В. Вишняков, В.В. Гудзев, А.В. Ермачихин, Н.Б. Рыбин, Н.М. Толкач. Рязань, 2016. 12 с.
- 5) Легкий В.Н. Оптоэлектронные элементы и устройства систем специального назначения [Электронный ресурс] : учебник / В.Н. Легкий, Б.В. Галун, О.В. Санков. Электрон. текстовые данные. Новосибирск: Новосибирский государственный технический университет, 2011. 455 с. 978-5-7782-1777-5. Режим доступа: http://www.iprbookshop.ru/47705.html
- 6) Датчики [Электронный ресурс] : справочное пособие / В.М. Шарапов [и др.]. Электрон. текстовые данные. М. : Техносфера, 2012. 624 с. 978-5-94836-316-5. Режим доступа: http://www.iprbookshop.ru/16974.html
- 7) Шишкин, Г.Г. Наноэлектроника. Элементы, приборы, устройства [Электронный ресурс] : учеб. пособие / Г.Г. Шишкин, И.М. Агеев. Электрон. дан. Москва : Издательство "Лаборатория знаний", 2015. 411 с. Режим доступа: https://e.lanbook.com/book/66208.

6.6 Методические указания к курсовому проектированию (курсовой работе) и другим видам самостоятельной работы

Изучение дисциплины «Микро- и наносенсоры» проходит во 2 семестре 1 года обучения. Основные темы дисциплины осваиваются в ходе аудиторных занятий, однако важная роль отводится и самостоятельной работе студентов. Самостоятельное изучение тем учебной дисциплины способствует: закреплению знаний, умений и навыков, полученных в ходе аудиторных занятий; углублению и расширению знаний по отдельным вопросам и темам дисциплины; освоению умений прикладного и практического использования полученных знаний; освоению умений по исследованию характеристик и параметров материалов электронной техники.

Самостоятельная работа включает в себя следующие этапы:

- -изучение теоретического материала (работа над конспектом лекции);
- -самостоятельное изучение дополнительных информационных ресурсов (доработка конспекта лекции);
 - -выполнение тестовых заданий текущего контроля успеваемости;
 - -итоговая аттестация по дисциплине текущий контроль (подготовка к экзамену).

<u>Работа над конспектом лекции:</u> лекции — основной источник информации по предмету, позволяющий не только изучить материал, но и получить представление о наличии других источников, сопоставить особенности практического применения получаемых знаний. Лекции предоставляют возможность «интерактивного» обучения, когда есть возможность задавать преподавателю вопросы и получать на них ответы. Поэтому рекомендуется в день, предшествующий очередной лекции, прочитать конспекты двух предшествующих лекций, обратив особое внимание на содержимое последней лекции.

<u>Доработка конспекта лекции</u> с применением учебника, методической литературы, дополнительной литературы, интернет-ресурсов: позволяет самостоятельно изучить особенности применения методов анализа и диагностики микро- и наносистем, которые не рассмотрены во время лекций и лабораторных занятий. Кроме того, рабочая программа предполагает рассмотрение некоторых относительно несложных тем только во время самостоятельных занятий, без чтения лектором.

<u>Подготовка к практическому занятию:</u> состоит в теоретической подготовке (изучение конспекта лекций и дополнительной литературы), самостоятельном решении задач из методических пособий.

<u>Подготовка к лабораторному занятию:</u> состоит в теоретической подготовке (изучение конспекта лекций и дополнительной литературы) и подготовке предварительного отчета, который должен быть завершен при ее выполнении в лаборатории.

Методические требования к оформлению отчетов о лабораторных работах:

Отчет о лабораторной работе должен содержать следующие элементы:

- номер, название и цель работы;
- основные расчетные соотношения;
- таблицы результатов экспериментов, выполненные карандашом по линейке либо при помощи соответствующей компьютерной программы;
- графики сканов и экспериментальных зависимостей, полученных при выполнении лабораторной работы;
- выводы, содержащие анализ экспериментальных зависимостей, сравнение результатов, полученных в работе, с данными справочной литературы.

Перед выполнением лабораторной работы каждому студенту необходимо иметь полностью оформленный отчет о ранее выполненной работе и отчет о выполняемой работе, содержащий все перечисленные элементы (за исключением экспериментальных данных в таб-

лице, графиков, выводов). При несоблюдении указанных требований студент к лабораторной работе не допускается.

<u>Курсовая работа (проект) - КР(П) -</u> магистранта по дисциплине «Микро- и наносенсоры» представляет собой квалификационную работу научно-практического содержания, которое должно соответствовать современному уровню развития науки, план работы - отражать логику и характер разрабатываемой темы. Типовые темы $KP(\Pi)$ приведены в Приложении к рабочей программе дисциплины (см. документ «Оценочные материалы по дисциплине «Микро- и наносенсоры»).

 $KP(\Pi)$ оформляется в виде пояснительной записки объемом 25-30 страниц стандартного текста в соответствии с требованиями ЕСКД и ГОСТ 7.32-2001 («Отчет о научно- исследовательской работе»). Материал $KP(\Pi)$ излагается на русском языке. Экспериментальные данные и иллюстративный материал при большом объеме могут быть вынесены в приложения к $KP(\Pi)$. Приложения в указанный выше объем не включаются.

Структура КР(П) регламентируется положением, утвержденным в РГРТУ, ГОСТ 7.32-2001 и должна включать следующие элементы:

- -титульный лист;
- -задание на выполнение курсовой работы;
- -содержание;
- -обозначения и сокращения (при необходимости);
- -введение;
- -основную часть (теоретико-методологический, аналитический, проектно-конструкторский, проектно-технологический и (или) экспериментальный разделы);
 - -заключение;
 - -библиографический список;
 - -приложения (если необходимо).

Описание содержания указанных разделов приведено в методических указаниях.

Пояснительная записка к $KP(\Pi)$ должна быть оформлена с использованием компьютера и принтера на одной стороне листа белой бумаги формата A4 через полтора интервала. Цвет шрифта должен быть черным, высота букв, цифр и других знаков — не менее 1,8 мм (шрифт не менее 12). Абзацный отступ должен быть равен 1 - 1,5 см. Текст должен быть отформатирован по ширине страницы. Текст пояснительной записки следует печатать, соблюдая следующие размеры полей: правое — $10 \, \text{мм}$, левое — $30 \, \text{мм}$, верхнее и нижнее — $20 \, \text{мм}$.

Иллюстративный материал КР(П) представляется в виде плакатов, рисунков, схем, графиков, диаграмм, фотографий, таблиц и т.п. Иллюстративный материал выполняется с целью демонстрации при защите основных моментов работы, отражающих суть выполненных теоретических, экспериментальных исследований и технических разработок, выводов и рекомендаций. Иллюстративный материал выносится на защиту в мультимедийном виде (в виде слайдов). Допускается использование кино- и видеороликов.

Требования к оформлению иллюстративного материала:

- иллюстративный материал в виде слайдов разрабатывается с использованием программы Microsoft PowerPoint в пакете Microsoft Office XP/2003/2007/2010 или иного свободно распространяемого программного обеспечения для представлений презентаций (Libre Office Impress, Open Office Impress и др.);
 - количество слайдов 10 -12шт.;
- первый (титульный) слайд содержит: тему ВКР, Ф.И.О. студента, Ф.И.О., должность руководителя;
- слайды оформляются в свободном стиле с использованием возможностей программного обеспечения.

Подготовка к зачету, экзамену. В конце семестра при подготовке к аттестации студент должен повторить изученный в семестре материал, и в ходе повторения обобщить его, сформировав цельное представление о нем. Следует иметь в виду, что на подготовку к промежуточной аттестации времени бывает очень мало, поэтому начинать эту подготовку надо заранее, не дожидаясь последней недели семестра. При этом основной вид подготовки — «свертывание» большого объема информации в компактный вид, а также тренировка в ее «развертывании» (примеры к теории, выведение одних закономерностей из других и т.д.). Надо также правильно распределить силы, не только готовясь к самому экзамену, но и позаботившись о допуске к нему (это добросовестное посещение занятий, выполнение в назначенный срок и активность при выполнении тестовых заданий по дисциплине). Следует всегда помнить, что залог успеха студента в учебе — планомерная работа в течение всего семестра и своевременное выполнение всех видов работы.

7 ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1. Сайт кафедры микро- и наноэлектроники РГРТУ: http://www.rsreu.ru/faculties/fe/kafedri/mnel; https://disk.rsreu.ru.
- 2. Система дистанционного обучения $\Phi \Gamma BOY$ BO «РГРТУ», режим доступа. http://cdo.rsreu.ru/
 - 3. Единое окно доступа к образовательным ресурсам: http://window.edu.ru/
 - 4. Интернет Университет Информационных Технологий: http://www.intuit.ru/
- 5. Электронно-библиотечная система «IPRbooks» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный, доступ из сети Интернет по паролю. URL: https://iprbookshop.ru/.
- 6. Электронно-библиотечная система издательства «Лань» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный, доступ из сети Интернет по паролю. URL: https://www.e.lanbook.com
- 7. Электронная библиотека РГРТУ [Электронный ресурс]. Режим доступа: из корпоративной сети РГРТУ по паролю. URL: http://elib.rsreu.ru/

8 ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. Операционная система Windows XP (Microsoft Imagine, номер подписки 700102019, бессрочно);
- 2. Операционная система Windows XP (Microsoft Imagine, номер подписки ID 700565239, бессрочно);
- 3. Kaspersky Endpoint Security (Коммерческая лицензия на 1000 компьютеров №2304-180222-115814-600-1595, срок действия с 25.02.2018 по 05.03.2019);
 - 4. LibreOffice
 - 5. Adobe acrobat reader
 - 6. Среда инженерно-графического программирования LabView 9
 - 7. MathCAD
 - 7. Справочная правовая система «Консультант Плюс» [Электронный ресурс]. Режим

доступа: доступ из корпоративной сети РГРТУ – свободный.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для освоения дисциплины необходимы следующие материально-технические ресурсы:

- 1) аудитория для проведения лекционных и практических занятий, групповых и индивидуальных консультаций, текущего контроля, промежуточной аттестации, оборудованная маркерной (меловой) доской;
- 2) аудитория для проведения лабораторных работ, оснащенная учебным оборудованием зондовой микроскопии и спектроскопии;
- 3) аудитория для самостоятельной работы, оснащенная индивидуальной компьютерной техникой с подключением к локальной вычислительной сети и сети Интернет.

No	Наименование специальных поме-	Перечень специализированного оборудования
	щений и помещений для самостоя-	тере тепь специализированного оборудования
	тельной работы	
1	Учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, курсового проектирования (выполнения курсовых работ), групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, № 51 главного учебного корпуса	Специализированная мебель (40 посадочных мест) ПК Intel Celeron 1,8 ГГц — 1 шт. Проектор Sanyo PLC-XP4 Экран Аудиторная доска Возможность подключения к сети «Интернет» проводным и беспроводным способом и обеспечением доступа в электронную
2	Помещение для самостоятельной работы, № 501, к 2 лабораторный корпус	информационно-образовательную среду РГРТУ. Магнитно-маркерная доска; ПК Intel Celeron CPV J1800 – 25 шт; Возможность подключения к сети «Интернет» проводным и беспроводным способом и обеспечением доступа в электронную информационно-образовательную среду РГРТУ.
3	Учебная лаборатория, оснащенная лабораторным оборудованием, № 057 главного учебного корпуса	4 лабораторных стенда. Возможность подключения к сети «Интернет» проводным и беспроводным способом и обеспечением доступа в электронную информационно-образовательную среду РГРТУ.
4	Аудитория для хранения и ремонта оборудования, № 343 главного учебного корпуса	2 компьютера: ПЭВМ на базе CPU E5300 Dual Core 2,6 GHz, ПЭВМ E2200 ASUS, принтер hp 1010, копир. аппарат Canon 5 мест

Программу составил:

к.т.н., доцент, доц. каф. МНЭЛ

Вишняков Н.В.