МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра автоматизированных систем управления

СОГЛАСОВАНО

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.06 «Программирование микропроцессоров»

Направление подготовки 09.03.02 «Информационные системы и технологии»

Уровень подготовки – академический бакалавриат

Квалификация выпускника – бакалавр

Формы обучения – очная, заочная

ЛИСТ СОГЛАСОВАНИЯ

Рабочая программа составлена с учетом требований федерального государственного образовательного стандарта высшего образования по направлению подготовки 09.03.02 «Информационные системы и технологии», утвержденного приказом Минобрнауки России от 19.09.2017 г. № 926.

Разработчик

доцент кафедры АСУ

Челебаев С.В.

Рассмотрена и утверждена на заседании кафедры 25 июня 2020 г., протокол № 10.

Заведующий кафедрой автоматизированных систем управления

clar

Холопов С.И.

1. Цели и задачи изучения дисциплины

Рабочая программа по дисциплине «Программирование микропроцессоров» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 09.03.02 «Информационные системы и технологии» (уровень бакалавриата), утвержденным приказом Минобрнауки России от 19.09.2017 г. № 926.

Цель изучения дисциплины — формирование теоретических знаний и практических навыков в области программирования микропроцессоров, написания и отладки программ на языках ассемблера микропроцессоров, а также применения микропроцессоров в информационных системах.

Задачи освоения учебной дисциплины:

- получение совокупности знаний о классификации микропроцессоров, архитектуре микропроцессоров, организации ввода-вывода в микропроцессорной системе, организации памяти микропроцессорной системы, языках программирования микропроцессоров низкого уровня, средствах для написания и отладки программ;
- приобретение навыков разработки программ на ассемблерах микроконтроллеров AVR и микропроцессоров Intel, а также отладки написанных на ассемблере программ.

2. Место дисциплины в структуре основной профессиональной образовательной программы

Дисциплина «Программирование микропроцессоров» относится к части Блока 1, формируемой участниками образовательныть отношений (Б1.В.06), учебного плана ОПОП. Дисциплина изучается по очной форме на 4 курсе в 7 семестре, по заочной – на 5 курсе.

Требования к входным знаниям, умениям и компетенциям студента, необходимые для изучения данной дисциплины, совпадают с выходными знаниями, умениями и компетенциями, полученными в ходе изучения следующих дисциплин предусмотренных учебным планом подготовки бакалавров: «Программирование логических интегральных схем», «Технологии программирования», «Инструментальные средства информационных систем».

Теоретические знания и навыки, полученные при изучении дисциплины «Программирование микропроцессоров» могут быть использованы при изучении дисциплин: «Аппаратно-программные комплексы информационных систем», «Информационно-измерительные системы» а также при подготовке выпускной квалификационной работы.

3 Компетенции обучающегося, формируемые в результате освоения дисциплины

Код и наименование	Код и наименование индикатора
компетенций	достижения компетенции
ПК-5. Способен кодировать на	ПК-5.1
языках программирования,	Знать: основы программирования; современные
верифицировать структуру	языки ассемблера;
программного кода, тестировать	современные методики отладки программ.
результаты кодирования	ПК-5.2
	Уметь: кодировать на языках программирования
	ассемблера; тестировать результаты кодирования;
	тестировать модули ИС
	ПК-5.3
	Владеть: приемами разработки кода ИС и
	тестирования разрабатываемого модуля ИС.

4 Структура и содержание дисциплины

4.1 Объем дисциплины по семестрам (курсам) и видам занятий в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 3 зачетных единицы (108 часа).

Dry vision of page 1		кость, час
Вид учебной работы	Очная форма	Заочная форма
Аудиторные занятия (всего),	48,25	10,25
в том числе:		
Лекции	24	4
Лабораторные работы (ЛР)	16	4
Практические занятия (ПЗ)	8	2
Иная контактная работа (ИКР)	0,25	0,25
Самостоятельная работа обучающихся (всего),	59,75	97,75
в том числе:		
Самостоятельные занятия	51	84
Контрольная работа		10
Контроль	8,75	3,75
Вид промежуточной аттестации:	зачет	Зачет
Общая трудоемкость дисциплины	108	108
Зачетные единицы трудоемкости	3	3
Контактная работа	48,25	10,25

4.2. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

Очная форма обучения

$N_{\underline{0}}$	Раздел дисциплины	Общая	К	онтактная р	оабота		Самосто-
Π/Π		трудоем-	Всего	Лекции	ЛР	ПЗ	ятельная
		кость					работа
1	Архитектура	23	12	8	-	4	11
	микропроцессоров						
2	Программирование	18	8	4	4	-	10
	микропроцессоров на основе						
	архитектуры х86						
3	Программирование	18	8	4	4	-	10
	микропроцессоров на основе						
	архитектуры х32						
4	Программирование FPU,	20	10	4	4	2	10
	SSE и x64						
5	Программирование	20	10	4	4	2	10
	микроконтроллеров						
	семейства AVR						
	И того	99	48	24	16	8	51
	Контроль (зачет)	9					9
	Всего	108	48	16	8	8	60

Заочная форма обучения

No	Раздел дисциплины	Общая	К	онтактная р	работа		Самосто-
Π/Π		трудоем-	Всего	Лекции	ЛР	П3	ятельная
		кость					работа
1	Архитектура	20	2	2	-	-	18
	микропроцессоров						
2	Программирование	21	3	1	2	-	18
	микропроцессоров на основе						
	архитектуры х86						
3	Программирование	21	1	1	-	-	20
	микропроцессоров на основе						
	архитектуры х32						
4	Программирование FPU,	21	1	1	-	-	20
	SSE и x64						
5	Программирование	21	1	1	-	-	20
	микроконтроллеров						
	семейства AVR						
	И того	104	8	6	2	-	96
	Контроль (зачет)	4					4
	Всего	108	48	6	2	_	100

4.3 Содержание дисциплины 4.3.1 Лекционные занятия

$N_{\overline{0}}$	Наименование	Содержание раздела	Груд	оем-	Форми-	Форма
	раздела		ко	сть	руемые	контроля
ПП	дисциплины		(ча	ac)	компе-	
			0Ч-	зао-	тенции	
			ная	чная		
1	Архитектура	Цель дисциплины, изучаемые темы, темы	8	2	ПК-5	Зачет
	микропроцессо	лабораторных работ и практических				
	ров	занятий, литература. Понятие				
		микропроцессора. Цикл команды.				
		Система команд. Классификация				
		микропроцессоров. Однокристальные				
		микропроцессоры. Многокристальные				
		микропроцессоры. Операционный				
		процессор. Управляющий процессор.				
		Универсальный микропроцессор.				
		Специализированный микропроцессор.				
		Однопрограммный микропроцессор.				
		Мультипрограммный микропроцессор.				
		Области применения микропроцессоров в				
		информационных системах.				
		Основные характеристики.				
		Микроархитектура. Макроархитектура.				
		Функции микропроцессора. Структура				
		типового микропроцессора. Логическая				
		структура. Устройство управления.				

	_		1	1		,
		Особенности программного и				
		микропрограммного управления				
		операциями. Система команд. Типы				
		архитектуры. Архитектура Дж. Фон				
		Неймана. Архитектура Гарвардской				
		лаборатории. Регистровая архитектура.				
		Стековая архитектура. Архитектура,				
		ориентированная на память.				
		Микропроцессор і8080.				
		Режим адресации памяти.				
		Непосредственная адресация. Прямая				
		адресация. Относительная адресация.				
		Укороченная адресация. Регистровая				
		адресация. Косвенная адресация.				
		Автоинкрементная и автодекрементная				
		адресация. Стековая адресация.				
		Программный стек. Аппаратный стек.				
		Организация ввода-вывода в				
		микропроцессорной системе.				
		Программная модель внешнего				
		устройства. Форматы передачи данных.				
		Параллельная передача данных.				
		Последовательная передача данных.				
		Способы обмена информацией.				
		Программно-управляемый ввод-вывод.				
		Организация прерываний. Организация				
		прямого доступа к памяти.				
		Основные характеристики				
		полупроводниковой памяти. Постоянные				
		запоминающие устройства. Полевой				
		транзистор с плавающим затвором.				
		МНОП (металл-нитрид-оксид-полу-				
		проводник) транзистор. Оперативные				
		запоминающие устройства. Статические				
		запоминающие устройства. Статические запоминающие устройства.				
		запоминающие устроиства. Динамические запоминающие				
		устройства. Запоминающие устройства с				
		произвольной выборкой. Микросхемы памяти в составе микропроцессорной				
		системы. Буферная память. Стековая				
2		Память.	4	1	ПК-5	Зачет
		Архитектура микропроцессора і8086.	4	1	IIN-J	Sayer
		Регистровая модель і8086. Форматы				
		команд і8086. Способы адресации і8086:				
	-	непосредственная адресация, прямая				
	архитектуры	адресация, регистровая адресация,				
	x86	косвенно-регистровая адресация, базовая				
		адресация, индексная адресация,				
		адресация базовая со смещением,				
		адресация индексная со смещением,				
		базово-индексная адресация, базово-				
		индексная адресация со смещением. Модели памяти i8086. Ассемблер				
		INTO TOTAL TOLERTY 19094 A GOOVERS	1	1		

	1					
		микропроцессора і8086. Система команд				
		і8086: команды пересылки,				
		арифметические команды, логические				
		команды, команды передачи управления,				
		команды сравнения, команды				
		организации циклов, команды ввода-				
		вывода. Компиляция программ для і8086.				
		Применение программ архитектуры х86 в				
		современных платформах.				
2	Пастиський ста	1 1	4	1	ПК-5	20110
3		Микропроцессор і80386. Регистровая	4	1	11K-3	Зачет
	ние	модель i80386. Форматы команд i80386.				
	микропроцессо	Система команд і80386. Способы				
	ров на основе	адресации і80386. Базовая адресация с				
	архитектуры	масштабированием. Индексная адресация				
	x32	с масштабированием. Организация				
		памяти і80386. Организация памяти				
		i80386 в «реальном» режиме (real mode).				
		Организация памяти і80386 в				
		«защищенном» режиме (protected mode).				
		Дескриптор. Состав дескриптора.				
		Дескриптор: Состав дескриптора. Дескрипторная таблица. Виды				
		дескрипторных таблиц. Скрытые				
		регистры і80386. Страничная				
		организация памяти. Защита памяти				
		(уровни привилегий). Ассемблер і80386.				
		Компиляция программ для і80386.				
		Применение программ архитектуры х386				
		в современных платформах.				
4	Программирова	Архитектура х64. Регистровая модель	4	1	ПК-5	Зачет
	ние модуля	х64. Многоядерная архитектура.				
	операций с	Архитектура арифметического				
	плавающей	сопроцессора і8087. Регистровая модель				
	,	і8087. Система команд і8087. Ассемблер				
	` _	18087. Компиляция программ под 18087.				
	ПОТОКОВОГО	Понятие Floating Point Unit (FPU).				
	SIMD-	Архитектура устройства SSE.				
	расширения	Регистровая модель SSE. Система команд				
	процессора	SSE. Ассемблер SSE. Компиляция				
	(SSE) и x64	программ под SSE.				
5	Программирова	Технические характеристики	4	1	ПК-5	Зачет
	ние	микроконтроллеров AVR. Периферийные				
	микроконтролл	устройства. Архитектура				
		микроконтроллера. Память программ и				
	AVR	стек. Память данных. Регистры				
		управления. Прерывания. Ассемблер				
		микроконтроллера AVR.				
		1 1				
		Интегрированная среда AVR Studio.				
		Создание проекта на ассемблере.				
		Компиляция программы для AVR-				
		микроконтроллера. Отладка программы				
1	1	на ассемблере.				

4.3.2 Лабораторные работы

№ пп	Тема лабораторной работы	Раздел дисцип- лины	кос	оем- сть, ас зао- чная	Форми- руемые компе- тенции	Формы контроля
1	Программирование микропроцессоров на основе архитектуры x86	2	4	2	ПК-5	Зачет
2	Программирование микропроцессоров на основе архитектуры x32	3	4	-	ПК-5	Зачет
3	Программирование микропроцессоров с использованием системы команд FPU	4	4	-	ПК-5	Зачет
4	Программирование AVR- микроконтроллеров	5	4	-	ПК-5	Зачет

4.3.3 Практические занятия (упражнения) (только очная форма обучения)

№ пп	Тема практических занятий	Раздел дисцип- лины	Трудоем- кость, час	Форми- руемые компе- тенции	Формы контроля
1	Программирование микропроцессора i8080	1	2	ПК-5	Зачет
2	Программирование операций вводавывода	1	2	ПК-5	Зачет
3	Программирование микропроцессоров с использованием системы команд SSE	4	2	ПК-5	Зачет
4	Программирование AVR- микроконтроллеров	5	2	ПК-5	Зачет

4.3.4 Самостоятельная работа

Самостоятельная работа студентов по дисциплине «Программирование микропроцессоров» предназначена для развития у обучающихся навыков целенаправленного самостоятельного приобретения новых знаний и умений.

Самостоятельная работа включает в себя следующие составляющие:

- изучение теоретического материала по конспектам лекций;
- самостоятельное изучение дополнительных информационных ресурсов по темам разделов дисциплины, приведенных в п. 6 «Учебно-методическое обеспечение дисциплны»;
- выполнение заданий текущего контроля успеваемости (подготовка к лабораторным работам и сдача лабораторных работ);
 - выполнение заданий по лабораторным работам;
 - выполнение заданий по практическим занятиям;
 - итоговая аттестация по дисциплине (подготовка к зачету).

<u>Подготовка к лабораторной работе</u> предполагает изучение лекционного материала по теме лабораторной работы и разделов «Краткие теоретические сведения» в методических указаниях к лабораторным работам (теоретическая подготовка) и проведение предварительных расчетов, необходимых для успешного выполнения лабораторной работы.

<u>Подготовка к выполнению заданий по практическим занятиям</u> предполагает изучение соответствующих разделов лекционного материала, и других источников из прилагаемого списка (п.6).

$N_{\underline{0}}$	Тематика самостоятельной работы	Тру	доем-	Форми-	Формы контрол	
Π/Π		кс	ость	руемые		
		(ч	ac.)	компе-		
		очн.	заочн.	тенции	очн.	заочн.
1	Подготовка по разделу 1	11	18	ПК-5	ПЗ,	зачет
	Архитектура микропроцессоров [1-4]				зачет	
2	Подготовка по разделу 2	10	18	ПК-5	ЛР,	ЛР,
	Программирование микропроцессоров на				зачет	зачет
	основе архитектуры х86 [2-5, 7]					
3	Подготовка по разделу 3	10	20	ПК-5	ЛР,	зачет
	Программирование микропроцессоров на				зачет	
	основе архитектуры х32 [3-7]					
4	Подготовка по разделу 4	10	20	ПК-5	ЛР, ПЗ,	зачет
	Программирование FPU, SSE и x64 [3-5, 7]				зачет	
5	Подготовка по разделу 5	10	20	ПК-5	ЛР, ПЗ,	зачет
	Программирование микроконтроллеров				зачет	
	семейства AVR [1, 6]					

5. Оценочные материалы для проведения промежуточной аттестации обучающихся по дисциплине

Ооценочные средства приведены в Приложении к рабочей программе дисциплины в документе «Оценочные материалы» по дисциплине «Программирование микропроцессоров».

6. Учебно-методическое обеспечения дисциплины

6.1. Основная учебная литература:

- 1. Гуров В.В. Архитектура микропроцессоров [Электронный ресурс] / В.В. Гуров. Электрон. текстовые данные. М.: Интернет-Университет Информационных Технологий (ИНТУИТ), 2016. 115 с. 978-5-9963-0267-3. Режим доступа: http://www.iprbookshop.ru/56313.html
- 2. Учебно-методическое пособие и задания на курсовое проектирование по дисциплине Цифровые устройства и микропроцессоры [Электронный ресурс] Электрон. текстовые данные. М.: Московский технический университет связи и информатики, 2015. 36 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/63371.html
- 3. Муромцев Д.Ю. Микропроцессоры и микроЭВМ [Электронный ресурс]: учеб. пособие / Д.Ю. Муромцев, Е.Н. Яшин. Электрон. текстовые данные. Тамбов: Тамбовский государственный технический университет, ЭБС АСВ, 2013. 97 с. 978-5-8265-1172-5. Режим доступа: http://www.iprbookshop.ru/63871.html
- 4. Сперанский В.С. Конспект лекций по курсу Микропроцессоры и цифровая обработка сигналов [Электронный ресурс] / В.С. Сперанский. Электрон. текстовые данные. М.: Московский технический университет связи и информатики, 2013. 102 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/63339.html
- 5. Русанов В.В. Микропроцессорные устройства и системы [Электронный ресурс]: учеб. пособие / В.В. Русанов, М.Ю. Шевелёв. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, 2012. 184 с. 978-5-94154-128-7. Режим доступа: http://www.iprbookshop.ru/13946.html

- 6. Челебаев С.В. Программирование AVR-микроконтроллера: методические указания к лабораторным работам Рязань: Рязанский государственный радиотехнический университет, 2015. 24 с. Режим доступа: http://elib.rsreu.ru/ebs/download/1070
- 7. Челебаев С.В. Программирование на языке ассемблера микропроцессоров Intel: методические указания к лабораторным работам Рязань: Рязанский государственный радиотехнический университет, 2016. 24 с. Режим доступа: http://elib.rsreu.ru/ebs/download/1071

6.2. Дополнительная литература:

- 1. Микушин А.В. Программирование микропроцессоров семейства MCS-51 [Электронный ресурс]: монография / А.В. Микушин, В.И. Сединин. Электрон. текстовые данные. Новосибирск: Сибирский государственный университет телекоммуникаций и информатики, 2016. 161 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/69230.html
- 2. Белов А.В. Разработка устройств на микроконтроллерах AVR [Электронный ресурс]: шагаем от «чайника» до профи / А.В. Белов. Электрон. текстовые данные. СПб.: Наука и Техника, 2013. 528 с. 978-5-94387-825-1. Режим доступа: http://www.iprbookshop.ru/28813.html

6.3 Методические рекомендации по организации изучения дисциплины

Методически изучение дисциплины производится с применением активных форм проведения занятий. Принятая технология активного обучения базируется на работе, когда в процессе лекций, лабораторных и практических занятий, дополняемых самостоятельной работой обучаемых, выполняется серия проектно-рассчетных заданий и экспериментов, решение которых студентами позволяет практически применить полученные знания, развить необходимые профессиональные и общекультурные компетенции по данной дисциплине.

После изучения отдельных разделов дисциплины осуществляется проведение текущего и рубежного контроля усвоения материала студентами путем тестовых вопросов.

Успешное освоение дисциплины во многом зависит от самостоятельной работы студента. Рекомендуется следующим образом организовать время, необходимое для изучения дисциплины:

Изучение конспекта лекции в тот же день, после лекции – 10-15 минут.

Изучение теоретического материала по учебнику и конспекту – 1 час в неделю в ходе подготовки к практическому занятию и теоретическому зачету.

Изучение методических указаний к лабораторной работе -2 часа перед выполнением лабораторной работы и 2 часа для оформления отчета и подготовки к сдаче работы.

Перед сдачей лабораторной работы рекомендуется ознакомиться со списком вопросов изучаемой темы и попытаться самостоятельно на них ответить, используя конспект лекций и рекомендуемую литературу. Таким образом, вы сможете сэкономить свое время и время преподавателя.

Кроме чтения учебной литературы из обязательного списка рекомендуется активно использовать информационные ресурсы сети Интернет по изучаемой теме. Ответы на многие вопросы, связанные с темами дисциплины Вы можете получить в сети Интернет, посещая соответствующие информационные ресурсы.

Самостоятельное изучение тем учебной дисциплины способствует:

- закреплению знаний, умений и навыков, полученных в ходе аудиторных занятий;
- углублению и расширению знаний по отдельным вопросам и темам дисциплины;
- освоению умений прикладного и практического использования полученных знаний в области проектирования информационных систем;
 - получению навыков расчета характеристик информационных систем.

Самостоятельная работа как вид учебной работы может использоваться на лекциях, практических и лабораторных занятиях, а также иметь самостоятельное значение –

внеаудиторная самостоятельная работа обучающихся — при подготовке к лекциям, лабораторным работам, практическим занятиям, зачету.

Основными видами самостоятельной работы по дисциплине являются:

- самостоятельное изучение отдельных вопросов и тем дисциплины «Программирование микропроцессоров»;
 - выполнение практического или лабораторного задания;
- оформление отчета и подготовка к защите лабораторного задания, подготовка к зачету.

Зачет показывает степень освоения дисциплины обучающимся.

При подготовке к зачету студент должен из сведений по отдельным темам составить общее представление о дисциплине, уяснить связь отдельных разделов, научиться пользоваться полученными в процессе изучения дисциплины знаниями.

При подготовке к зачету необходимо тщательно изучить лекционный материал, просмотреть все отчеты по лабораторным работам и практическим упражнениям, чтобы еще раз осмыслить необходимость теории в практических задачах. Целесообразно после изучения (по лекционному материалу и другим информационным источникам) конкретного вопроса из числа контрольных вопросов к экзамену попытаться по памяти записать ответ на бумаге в возможно более развернутом виде. Это способствует развитию зрительной памяти и даст студенту больше уверенности в том, что к экзамену он готов. Возникшие при подготовке к экзамену вопросы, на которые студент не смог найти ответа, необходимо записать и выяснить их на консультации, которая обычно проводится накануне зачета.

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Ресурсы информационно-телекоммуникационной сети «интернет». Обучающимся предоставлена возможность индивидуального доступа к следующим электронно-библиотечным системам.

- 1. Электронно-библиотечная система «Лань», режим доступа с любого компьютера РГРТУ без пароля. URL: https://e.lanbook.com/
- 2. Электронно-библиотечная система «IPRbooks», режим доступа с любого компьютера РГРТУ без пароля, из сети интернет по паролю. URL: https://iprbookshop.ru/.
- 3. Электронная библиотека ЮРАЙТ, режим доступа из сети интернет без пароля. URL: https://biblio-online.ru/info/free-books/.
 - 4. Электронный ресурс «Виртуальная кафедра АСУ» https://rgrty.ru/.

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем

- 8.1. Операционная система Windows XP (Microsoft Imagine, номер подписки ID 700565239, бессрочно).
- 8.2 Пакеты программного обеспечения общего назначения (текстовые редакторы, графические редакторы и др.).
- 8.3. Пакеты прикладных программ Maxima или Mathcad. Система Maxima распространяется под лицензией GPL и доступна как пользователям OC Linux, так и пользователям MS Windows.
- 8.4. Пакеты прикладных программ: Atmel Studio 7.0 (свободно распространяемая версия) URL: http://www.microchip.com/avr-support/atmel-studio-7. Система Atmel Studio 7.0 распространяется под лицензией GPL и доступна как пользователям ОС Linux, так и пользователям MS Windows.

9 Материально-техническое обеспечение дисциплины

Для данной дисциплины применяется следующее материально-техническое обеспечение.

1. Лекционные занятия:

№	Наименование специальных	Перечень специализированного
	помещений и помещений для	оборудования
	самостоятельной работы	
1	Учебные аудитории для проведения	1 проектор NEC NP 216 G,
	занятий лекционного типа, групповых	1 экран, 1 компьютер Pentium G 620,
	и индивидуальных консультаций,	маркерная доска, 2 ученических стола, 64 места
	текущего контроля и промежуточной	Экран с ручным приводом – 1 шт.
	аттестации, № 254 главного учебного	Доска маркерная 120x200 см
	корпуса	Подключение к сети «Интернет» и обеспечение
		доступа в электронную информационно-
		образовательную среду РГРТУ.

2. Практические занятия и лабораторные работы:

Специализированный класс персональных ЭВМ (лаборатории 118, 127, 111a). Все компьютеры в классах подключены к локальной сети и имеют выход в «Интернет».

3. Прочее:

Рабочее место преподавателя, оснащенное компьютером с доступом в Интернет.