МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

КАФЕДРА МИКРО- И НАНОЭЛЕКТРОНИКИ

СОГЛАСОВАНО

Декан ФЭ

_/ Н.М. Верещагин

<u>22</u>»____06___20<u>М</u> г

УТВЕРЖДАЮ

Прорентор РОПиМД

_/ А.В. Корячко 20 20 г

Заведующий кафедрой МНЭЛ

__/ В.Г. Литвинов

2020 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ФТД.В.02 «ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ НАНОЭЛЕКТРОНИКИ»

Направление подготовки 11.03.04 «Электроника и наноэлектроника»

Направленность (профиль) подготовки Микро- и наноэлектроника

Уровень подготовки Академический бакалавриат

Квалификация выпускника – бакалавр

Форма обучения – очная

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требований федерального государственного образовательного стандарта высшего образования по направлению подготовки (специальности) 11.03.04 «Электроника и наноэлектроника»,

утвержденного 19.09.2017 № 927

Разработчики
Доцент каф. МНЭЛ
к.т.н. М.В. Зубков

Программа рассмотрена и одобрена на заседании кафедры МНЭЛ

«19 » _____ 06 ____ 2020 г., протокол № 9

Bunf

д.ф.-м.н., доцент

В.Г. Литвинов

1. ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины является формирование перечисленных ниже компетенций и систематических знаний в области технологических процессов, применяемых в наноэлектронике.

Залачи:

- изучение основных закономерностей технологических процессов изготовления наноразмерных элементов и структур;
- формирование навыков работы на технологическом оборудовании, применяемом при изготовлении компонентов наноэлектроники;
- формирование представления о методах контроля параметров и свойств наноразмерных объектов;
 - получение навыков научно-исследовательской и инженерной работы.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина ФТД.В.02 «Технологические процессы наноэлектроники» относится к части, формируемой участниками образовательных отношений, Блока ФТД «Факультативные дисциплины» основных профессиональных образовательных программ (далее – образовательных программ) бакалавриата «Микро- и наноэлектроника», «Промышленная электроника», «Электронные приборы и устройства» направления 11.03.04 «Электроника и наноэлектроника».

Пререквизиты дисциплины. Данная дисциплина базируется на следующих дисциплинах учебного плана подготовки бакалавров по направлению 11.03.04 «Электроника и наноэлектроника»: «Основы зондовой микроскопии» (Б1.2.В.01), «Физические основы электроники» (Б1.3.Б.08), «Метрология, стандартизация и технические измерения» (Б1.3.Б.07), «Теоретические основы электротехники» (Б1.3.Б.04). Требования к входным знаниям совпадают с требованиями к освоению перечисленных выше предшествующих дисциплин.

До освоения учебной дисциплины обучающиеся должны:

знать: основы физики вакуума, плазмы и твердого тела, принципы использования физических эффектов в вакууме, плазме и в твердом теле; основные проблемы и особенности современного этапа развития науки о технологических процессах микро- и наноэлектроники.

уметь: применять на практике основные приемы и программные средства обработки и представления данных в соответствии с поставленной задачей проводить расчеты физико-химических закономерностей, отражающих взаимосвязь между составом, структурой, свойствами и условиями получения полупроводниковых материалов и приборов, анализировать результаты расчетов и обосновывать полученные выводы.

владеть: основами разработки нормативно-технической документации в области изделий современной микро- и наноэлектроники; грамотным физическим научным языком; международной системой единиц измерений физических величин (СИ) при физических расчетах и формулировке физических закономерностей; навыками измерения основных физических величин.

Взаимосвязь с другими дисциплинами. Требования к входным знаниям совпадают с требованиями к освоению предшествующих дисциплин: «Физика (Б1.2.Б.02)», «Химия (Б1.2.Б.03)», «Информатика (Б1.2.Б.04)». Дисциплина «Технологические процессы наноэлектроники» (Б1.4.Ф.02) содержательно и методологически взаимосвязана с указанными дисциплинами.

Постреквизиты дисциплины. Компетенции, полученные в результате освоения дисциплины необходимы обучающемуся при изучении следующих дисциплин: «Схемотехника микроэлектронных устройств» (Б1.3.В.07а), «Элементы электронной техники» (Б1.3.В.05а), «Процессы микро- и нанотехнологии» (Б1.3.В.16), НИР, «Преддипломная практика», «Выпускная квалификационная работа».

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО, ПООП (при наличии) по данному направлению подготовки, а также компетенций (при наличии), установленных университетом.

Профессиональные компетенции выпускников и индикаторы их достижения

Задача ПД	Объект или об- ласть знания	Код и наимено- вание професси- ональной ком- петенции	Код и наименова- ние индикатора достижения про- фессиональной компетенции	Обоснование (ПС, анализ опыта)
Тип за	дач профессиональной	и деятельности: про	изводственно-техноло	гический
Обеспе-	Специалист по	ПК-5 Способен	ПК-5.1. Знает	29.006. Спе-
чение	проектированию	выполнять рабо-	принципы учета	циалист по
полного	систем в корпусе	ты по техноло-	видов и объемов	проектиро-
цикла		гической подго-	производственных	ванию си-
проекти-		товке производ-	работ. ПК-5.2.	стем в кор-
рования		ства материалов	Умеет осуществ-	пусе. 29.005.
тополо-		и изделий элек-	лять регламентное	Специалист
гической		тронной техники	обслуживание обо-	по техноло-
системы			рудования. ПК-5.3.	гии произ-
типа "си-			Владеет навыками	водства си-
стема в			настройки высоко-	стем в кор-
корпусе"			технологичного	пусе.
			оборудования в со-	
			ответствии с пра-	
			вилами настройки	
			и эксплуатации.	

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1 Объем дисциплины по семестрам (курсам) и видам занятий в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость изучения дисциплины составляет 2 ЗЕ (72 часа).

Дисциплина реализуется в рамках части, формируемой участниками образовательных отношений, Блока ФТД учебного плана ОПОП. Дисциплина изучается на 3 курсе в 5 семестре.

Вид учебной работы	Всего часов
Аудиторные занятия (всего)	32
В том числе:	
Лекции	32
Самостоятельная работа (СР) (всего)	40
Вид промежуточной аттестации (зачет, дифференцированный зачет, экзамен)	зачет
Общая трудоемкость час	72
Зачетные Единицы Трудоемкости	2
Контактная работа (по учебным занятиям)	32

4.2 Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

№	Раздел дисциплины	Общая тру-	Контактн	ая работа обуча-	
		доемкость,	ющихся с	преподавателем	CP
		всего часов	Всего	Лекции	
	Всего	72	32	32	40
1	Введение	4	2	2	2
2	Виды материалов наноэлектроники	14	6	6	8
3	Базовые технологические процессы и оборудование, применяемые в производстве материалов и компонентов наноэлектроники	16	8	8	8
4	Свойства материалов наноэлектроники	16	8	8	8
5	Технологические особенности изготовления современных приборов наноэлектроники	18	8	8	10
	Зачет и консультации	4			4

4.3. Содержание разделов дисциплины

4.3.1 Лекционные занятия

	1.5.1 Vickumonnisie Suisitini				
№	Темы лекционных занятий	Трудоем-	Формируемые	Форма	
Π/Π	темы лекционных занятии	кость (час.)	компетенции	контроля	
1	Предмет дисциплины, ее задачи. Цели и	2	ПК-5	зачет	
	задачи нанотехнологий. Основные понятия				
	и определения. Физические и технологиче-				
	ские проблемы и ограничения микроминиа-				
	тюризации полупроводниковых устройств.				
	Понятие мезоскопического размера. Клас-				
	сификация наноматериалов по техническо-				
	му назначению, составу и свойствам.				
2	Золи, гели, суспензии, коллоидные раство-	6	ПК-5	зачет	

1				
	ры, матрично-изолированные кластерные			
	сверхструктуры, фуллерены, фуллеренопо-			
	добные материалы, углеродные нанотрубки			
	и их производные, полимеры, сверхрешет-			
	ки, биомембраны, самоорганизующиеся			
	среды. Материалы на основе наноструктур-			
	ных элементов. Нанокристаллы. Структур-			
	ные элементы для наноматериалов более			
	высокого порядка. Самоорганизующиеся			
	упорядоченные пористые материалы. Мате-			
	риалы электроники для нанотехнологий.			
	Кремний и его модификации. Пористый			
	кремний. Гетероструктуры на основе твер-			
	дых растворов $A^{3}B^{5}$. Гетероструктуры с			
	двумерным электронным газом. Гетеро-			
	структуры с квантовыми ямами. Материалы			
	на основе нитридов и их применение. Про-			
	блемы подложек и выращивание буферных			
	слоев. Металлические нанокластеры. Кон-			
	струкционные материалы для несущих кон-			
	струкций изделий микро- и наносистемной			
	техники. Функциональные материалы мик-			
	ро- и наносистемной техники.			
3	Методы синтеза нанокристаллических по-	8	ПК-5	зачет
3	рошковых материалов. Газофазный метод.	O	111C 3	34 101
	Плазмохимический синтез. Осаждение из			
	коллоидных растворов. Метод термического			
	разложения и восстановления. Методы ме-			
	ханосинтеза, детонационного синтеза и			
	электровзрыва. Основы технологии угле-			
	родных нанотрубок. Схема установки для			
	получения углеродных нанотрубок методом			
	лазерной абляции. Дуговой способ получе-			
	ния углеродных нанотрубок. Метод пироли-			
	7 7 7			
	за углеводородов. Синтез из углеродсодержащих газов. Технология поликристалличе-			
	ских алмазов. Технология поликристаллических алмазов. Технология алмазных и алма-			
	зоподобных пленок. Технология металлоор-			
	<u>.</u>			
	ганических соединений. Технология некри-			
	сталлических материалов. Технология изго-			
	товления металлических и полупроводнико-			
	вых наноточек, нанонитей литографически-			
	ми методами. Эпитаксиальные методы по-			
	лучения материалов микросистемной тех-			
	ники. Гомо- и гетероэпитаксия. Физическое			
	осаждение из паровой фазы. Получение			
	аморфных, поликристаллических и моно-			
	кристаллических пленок. Молекулярно-			
	лучевая эпитаксия элементарных полупро-			
	водников и полупроводников на основе со-			
	единений A ³ B ⁵ , осаждение пленок диэлек-			

	триков и металлов. Химическое осаждение из газовой фазы: основные закономерности и методика. Эпитаксия из металлоорганических соединений и летучих неорганических гидридов. Механизмы гетероэпитаксиального роста: Франка-ван-дер-Верме, Фольмера-Вебера, Странского-Крастанова. Ионный синтез наноструктур. Процессы самоорганизации наноструктур при ионном синтезе. Технология двумерных гетероэпитаксиальных полупроводниковых систем. Традиционные технологические циклы изготовления интегральных схем, адаптированные для создания трехмерных механических структур: объемная микрообработка, поверхностная микрообработка, технология LIGA.			
4	Свойства наноматериалов. Механические, теплофизические, физико-химические, электрофизические, магнитные, оптические. Критерии выбора и совместимость наноматериалов. Кристаллохимическая и термомеханическая совместимость. Основы кристаллофизики и кристаллохимии наноматериалов. Физико-химия процессов синтеза наноструктурированных материалов. Принципы выбора полупроводниковых материалов. Материаловедческие проблемы в создании микро- и наносистемных устройств. Роль размерных эффектов в физико-химических и механических свойствах наноматериалов.	8	ПК-5	зачет
5	Функционально- активные материалы для электростатических, электромагнитных, пьезоэлектрических, оптических преобразователей энергии, движения, информации. Гетероструктуры с высокой плотностью двумерного электронного газа (ДЭГ). Транзисторы с высокой подвижностью электронов (НЕМТ-транзисторы). Структуры на микроскопически упорядоченных фасетированных поверхностях. Структуры с периодической модуляцией состава в эпитаксиальных пленках твердых растворов полупроводников. Перспективы изготовления электронных приборов с применением нанотрубок. Перспективы создания эффективных миниатюрных и сверхминиатюрных систем, обусловленные особыми физикомеханическими свойствами наноматериалов.	8	ПК-5	зачет

4.3.2 Самостоятельная работа

	4.3.2 Самостоятельная работа			
$N_{\underline{0}}$	Тематика самостоятельной работы	Трудоем-	Формируемые	Форма
Π/Π	тематика самостоятельной расоты	кость (час.)	компетенции	контроля
1.	Классификация наноматериалов по техниче-	2	ПК-5	Аналити-
	скому назначению, составу и свойствам. Це-			ческий
	ли и задачи нанотехнологий.			отчет, те-
				стовые
				задания,
				зачет
2.	Золи, гели, суспензии, коллоидные растворы,	8	ПК-5	Аналити-
	матрично-изолированные кластерные сверх-			ческий
	структуры, фуллерены, фуллереноподобные			отчет, те-
	материалы, углеродные нанотрубки и их			стовые
	производные, полимеры, сверхрешетки, био-			задания,
	мембраны, самоорганизующиеся среды.			зачет
3.	Ионный синтез наноструктур. Процес-	8	ПК-5	Аналити-
	сы самоорганизации наноструктур при ион-			ческий
	ном синтезе. Технология двумерных гетеро-			отчет, те-
	эпитаксиальных полупроводниковых си-			стовые
	стем. Традиционные технологические цик-			задания,
	лы изготовления интегральных схем, адап-			зачет
	тированные для создания трехмерных меха-			
	нических структур: объемная микрообра-			
	ботка, поверхностная микрообработка, тех-			
	нология LIGA.			
4.	Свойства наноматериалов. Механические,	8	ПК-5	Аналити-
	теплофизические, физико-химические, элек-			ческий
	трофизические, магнитные, оптические. Кри-			отчет, те-
	терии выбора и совместимость наноматериа-			стовые
	лов. Кристаллохимическая и термомеханиче-			задания,
	ская совместимость. Основы кристаллофизи-			зачет
	ки и кристаллохимии наноматериалов. Физи-			
	ко-химия процессов синтеза наноструктури-			
	рованных материалов.			
5.	Функционально-активные материалы для	10	ПК-5	Аналити-
	электростатических, электромагнитных,			ческий
	пьезоэлектрических, оптических, электро-			отчет, те-
	оптических и термоэлектрических преобра-			стовые
	зователей энергии, движения, информации.			задания,
				зачет

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Оценочные материалы приведены в приложении к рабочей программе дисциплины (см. документ «Оценочные материалы по дисциплине «Материалы электронной техники»).

6. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ CAMOCTOЯ-ТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

6.1 Основная литература

- 1. Раскин, А.А. Технология материалов микро-, опто- и наноэлектроники: в 2 частях. Ч. 1 [Электронный ресурс] : учеб. пособие / А.А. Раскин, В.К. Прокофьева. Электрон. дан. Москва : Издательство "Лаборатория знаний", 2015. 167 с. Режим доступа: https://e.lanbook.com/book/66213.
- 2. Рощин, В.М. Технология материалов микро-, опто- и наноэлектроники: в 2 частях. Ч. 2 [Электронный ресурс]: учеб. пособие / В.М. Рощин, М.В. Силибин. Электрон. дан. Москва: Издательство "Лаборатория знаний", 2015. 183 с. Режим доступа: https://e.lanbook.com/book/66214.
- 3. Рамбиди, Н.Г. Физические и химические основы нанотехнологий [Электронный ресурс] : учеб. пособие / Н.Г. Рамбиди, А.В. Берёзкин. Электрон. дан. Москва : Физматлит, 2009. 456 с. Режим доступа: https://e.lanbook.com/book/2291.
- 4. Старостин, В.В. Материалы и методы нанотехнологий [Электронный ресурс]: учеб. пособие Электрон. дан. Москва: Издательство "Лаборатория знаний", 2015. 434 с. Режим доступа: https://e.lanbook.com/book/66203.
- 5. Методы получения и исследования наноматериалов и наноструктур. Лабораторный практикум по нанотехнологиям: учебное пособие [Электронный ресурс]: учеб. пособие / Е.Д. Мишина [и др.]. Электрон. дан. Москва: Издательство "Лаборатория знаний", 2017. 187 с. Режим доступа: https://e.lanbook.com/book/94113.

6.2 Дополнительная литература

- 1. Малер Р., Кейминс Г. Элементы интегральных схем. М.: Мир, 1989. 630 с. (библиотека РГРТУ 33 экз.)
- 2. Технология СБИС, под ред. С.Зи, пер. с англ. под ред. Чистякова Ю.Д. М.: Мир, 1986. (библиотека РГРТУ 65 экз.)
- 3. Покровский Ф.Н. Материалы и компоненты радиоэлектронных средств: Учебное пособие для вузов. М: Горячая линия Телеком, 2005. 350 с. (библиотека РГРТУ 147 экз.)
- 4. Коледов М.А. Технология и конструирование микросхем, микропроцессоров и микросборок. Радио и связь, 1989. 400 с. (библиотека РГРТУ 113 экз.)
- 5. Курносов А.И., Юдин В.В. Технология производства полупроводниковых приборов и интегральных микросхем. М.: В.Ш., 1986. 367 с. (библиотека РГРТУ 84 экз.)
- 6. Черняев В.Н. Физико-химические процессы в технологии РЭА. М.: В.Ш., 1987. 375с. (библиотека РГРТУ 45 экз.)
- 7. Королёв М.А. Технология, конструкции и методы моделирования кремниевых интегральных микросхем: в 2 ч. Ч.1: Технологические процессы изготовления кремниевых интегральных схем и их моделирование. М.: БИНОМ. Лаборатория знаний, 2009. —397 с. (библиотека РГРТУ 1 экз.)
- 8. Введение в процессы интегральных микро- и нанотехнологий: Учебное пособие для вузов: в 2 т. Т.1: Физико-химические основы технологии микроэлектроники / Чистяков Ю.Д., Райнова Ю.П. М.: БИНОМ. Лаборатория знаний, 2010. —392 с. (библиотека РГРТУ 1 экз.)
- 9. Лозовский В.Н. Нанотехнологии в электронике. Введение в специальность: учебное пособие. Санкт-Петербург, 2008. 336 с. (библиотека РГРТУ 13 экз.)

6.3 Нормативные правовые акты

6.4 Периодические издания

6.5 Методические указания для обеспечения самостоятельных занятий

- 1. Рамбиди, Н.Г. Физические и химические основы нанотехнологий [Электронный ресурс] : учеб. пособие / Н.Г. Рамбиди, А.В. Берёзкин. Электрон. дан. Москва : Физматлит, 2009. 456 с. Режим доступа: https://e.lanbook.com/book/2291.
- 2. Старостин, В.В. Материалы и методы нанотехнологий [Электронный ресурс]: учеб. пособие Электрон. дан. Москва: Издательство "Лаборатория знаний", 2015. 434 с. Режим доступа: https://e.lanbook.com/book/66203.
- 3. Методы получения и исследования наноматериалов и наноструктур. Лабораторный практикум по нанотехнологиям: учебное пособие [Электронный ресурс]: учеб. пособие / Е.Д. Мишина [и др.]. Электрон. дан. Москва: Издательство "Лаборатория знаний", 2017. 187 с. Режим доступа: https://e.lanbook.com/book/94113.

6.6 Методические указания к курсовому проектированию (курсовой работе) и другим видам самостоятельной работы

Изучение дисциплины «Технологические процессы наноэлектроники» проходит в 5 семестре. Основные темы дисциплины осваиваются в ходе аудиторных занятий, однако важная роль отводится и самостоятельной работе студентов. Самостоятельное изучение тем учебной дисциплины способствует: закреплению знаний, умений и навыков, полученных в ходе аудиторных занятий; углублению и расширению знаний по отдельным вопросам и темам дисциплины; освоению умений прикладного и практического использования полученных знаний; освоению умений по исследованию характеристик и параметров материалов электронной техники.

Самостоятельная работа включает в себя следующие этапы:

- изучение теоретического материала (работа над конспектом лекции);
- самостоятельное изучение дополнительных информационных ресурсов (доработка конспекта лекции);
- выполнение заданий текущего контроля успеваемости (подготовка к лабораторным занятиям);
 - итоговая аттестация по дисциплине текущий контроль (подготовка к экзамену).

<u>Работа над конспектом лекции:</u> лекции — основной источник информации по предмету, позволяющий не только изучить материал, но и получить представление о наличии других источников, сопоставить особенности практического применения получаемых знаний. Лекции предоставляют возможность «интерактивного» обучения, когда есть возможность задавать преподавателю вопросы и получать на них ответы. Поэтому рекомендуется в день, предшествующий очередной лекции, прочитать конспекты двух предшествующих лекций, обратив особое внимание на содержимое последней лекции.

Доработка конспекта лекции с применением учебника, методической литературы, дополнительной литературы, интернет-ресурсов: позволяет самостоятельно изучить особенности свойств ряда материалов и применения их в электронной технике, которые не рассмотрены во время лекций и лабораторных занятий. Кроме того, рабочая программа предполагает рассмотрение некоторых относительно несложных тем только во время самостоятельных занятий, без чтения лектором.

<u>Подготовка к зачету, экзамену.</u> В конце семестра при подготовке к аттестации студент должен повторить изученный в семестре материал и в ходе повторения обобщить его, сформировав цельное представление о нем. Следует иметь в виду, что на подготовку к промежуточной аттестации времени бывает очень мало, поэтому начинать эту подготовку надо заранее, не дожидаясь последней недели семестра, при этом основной вид подготовки — «свертывание» большого объема информации в компактный вид, а также тренировка в ее «развертывании» (примеры к теории, выведение одних закономерностей из других и т.д.). Надо также правильно распределить силы, не только готовясь к самому экзамену,

но и позаботившись о допуске к нему (это добросовестное посещение занятий, выполнение в назначенный срок и активность на лабораторных занятиях). Следует всегда помнить, что залог успеха студента в учебе – планомерная работа в течение всего семестра и своевременное выполнение всех видов работы.

7 ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1. Сайт кафедры микро- и наноэлектроники РГРТУ: http://www.rsreu.ru/faculties/fe/kafedri/mnel.
- 2. Система дистанционного обучения $\Phi \Gamma EOY$ ВО «РГРТУ», режим доступа. http://cdo.rsreu.ru/
 - 3. Единое окно доступа к образовательным ресурсам: http://window.edu.ru/
 - 4. Интернет Университет Информационных Технологий: http://www.intuit.ru/
- 5. Электронно-библиотечная система «IPRbooks» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный, доступ из сети Интернет по паролю. URL: https://iprbookshop.ru/.
- 6. Электронно-библиотечная система издательства «Лань» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный, доступ из сети Интернет по паролю. URL: https://www.e.lanbook.com
- 7. Электронная библиотека РГРТУ [Электронный ресурс]. Режим доступа: из корпоративной сети РГРТУ по паролю. URL: http://elib.rsreu.ru/

8 ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. Операционная система Windows XP (Microsoft Imagine, номер подписки 700102019, бессрочно):
- 2. Операционная система Windows XP (Microsoft Imagine, номер подписки ID 700565239, бессрочно);
- 3. Kaspersky Endpoint Security (Коммерческая лицензия на 1000 компьютеров №2304-180222-115814-600-1595, срок действия с 25.02.2018 по 05.03.2019);
 - 4. LibreOffice
 - 5. Adobe acrobat reader
 - 6. Среда инженерно-графического программирования LabView 9
- 7. Справочная правовая система «Консультант Плюс» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для освоения дисциплины необходимы следующие материально-технические ресурсы:

- 1) аудитория для проведения лекционных и практических занятий, групповых и индивидуальных консультаций, текущего контроля, промежуточной аттестации, оборудованная маркерной (меловой) доской;
 - 2) аудитория для самостоятельной работы, оснащенная индивидуальной

компьютерной техникой с подключением к локальной вычислительной сети и сети Интернет;

3) лаборатория электрофизических измерений параметров и характеристик материалов электронной техники.

No	Наименование специальных по-	Перечень специализированного оборудования
	мещений и помещений для само-	
	стоятельной работы	
1	Учебные аудитории для	Специализированная мебель (70 посадочных мест)
	проведения занятий лекционного	ПК IntelCeleron 1,8 ГГц – 1 шт.
	типа, занятий семинарского типа,	Проектор Sanyo PLC-XP4
	курсового проектирования	Экран
	(выполнения курсовых работ),	Аудиторная доска
	групповых и индивидуальных	Возможность подключения к сети «Интернет»
	консультаций, текущего контроля	проводным и беспроводным способом и
	и промежуточной аттестации,	обеспечением доступа в электронную
	№ 267 главного учебного корпуса	информационно-образовательную среду РГРТУ.
2	Помещение для самостоятельной	Магнитно-маркерная доска;
	работы,	ПК Intel Celeron CPV J1800 – 25 шт;
	№ 501, к 2 лабораторный корпус	Возможность подключения к сети «Интернет»
		проводным и беспроводным способом и
		обеспечением доступа в электронную
		информационно-образовательную среду РГРТУ.
3	Учебная лаборатория, оснащенная	30 мест, доска магнитно-маркерная, экран
	лабораторным оборудованием,	настенный, 19 лабораторных стендов, в т.ч.3
	№ 341 главного учебного корпуса	виртуальных лабораторных стенда, вольтметры В7-
		21, В7-35, измерители Е4-7, Е9-4, осциллографы С1-
		64A,С1-75,ПЭВМ E2200 ASUS, компьютер
		Celeron 2500, блоки питания ВИП-
		010,автотрансформатор лабораторный ПК
		IntelCeleron 1,8 ΓΓμ – 1 шт.
		Проектор Sanyo PLC-XP4
		Экран
		Аудиторная доска
		Возможность подключения к сети «Интернет»
		проводным и беспроводным способом и
		обеспечением доступа в электронную
		информационно-образовательную среду РГРТУ.
4	Аудитория для хранения и ремонта	2 компьютера: ПЭВМ на базе CPU E5300 Dual
	оборудования,	Core 2,6 GHz, ПЭВМ E2200 ASUS, принтер hp
	№ 343 главного учебного корпуса	1010, копир. аппарат Canon
		5 мест

Программу составил:

к.т.н., доцент, доцент каф. МНЭЛ MB/

(М.В. Зубков)