МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ» ИМЕНИ В.Ф. УТКИНА

Кафедра «ВЫЧИСЛИТЕЛЬНАЯ И ПРИКЛАДНАЯ МАТЕМАТИКА»

СОГЛАСОВАНО

Декан ФВТ

∠Перепелкин Д.А.

« 26% об 2020 г.

Заведуютий кафедрой ВПМ

Овечкин Г.В.

6» об 2020 г.

УТВЕРЖДАЮ

Проректор РОПиМД

Корячко А.В.

2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.О.01.19 «Физические основы электротехники»

Направления подготовки 09.03.04 «Программная инженерия»

Уровень подготовки

Академический бакалавриат

Квалификация выпускника – бакалавр Формы обучения – очная

Рязань 2020 г.

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требований федерального государственного образовательного стандарта высшего образования по направлению подготовки (специальности) «Программная инженерия», утвержденного приказом Минобрнауки России от 19.09.2017 г. № 920.

Разработчик профессор кафедры АСУ	
Михеев А.А.	
Рассмотрена и одобрена на заседании кафедры «ДБ ОБ	20 20 г., протокол №
Заведующий кафедрой	
автоматизированных систем управления	
сву- Холопов С.И.	

1 Цели и задачи изучения дисциплины. Перечень планируемых результатов обучения

Рабочая программа дисциплины «Физические основы электротехники» составлена в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 09.03.04 «Программная инженерия» (уровень бакалавриата), утвержденным приказом Минобрнауки России от 19.09.2017 г. № 920.

Цель дисциплины — формирование знаний о физических процессах в электрических цепях, являющихся основой функционирования информационных систем.

Задачами дисциплины в соответствии с указанной целью являются:

- изучение основных понятий и определений в области электротехники, методов описания электрических цепей и основных законов их функционирования; изучение типовых методов расчета электрических цепей в установившемся и переходном режимах работы;
- приобретение умения выполнять типовые расчеты электрических цепей, осуществлять необходимые преобразования электрических цепей для упрощения процесса их расчета;
- приобретение практических навыков расчета электрических цепей для решения прикладных задач в области информационных систем.

2 Место дисциплины в структуре основной профессиональной образовательной программы

Дисциплина «Физические основы электротехники» относится к обязательной части (Б1.О.01.19) основной профессиональной образовательнойи программы (ОПОП).. Дисциплина изучается по очной форме обучения на 1 курсе во 2 семестре.

В данной дисциплине используются понятия следующих изучаемых параллельно дисциплин учебного плана: «Математика», «Физика».

Требования к знаниям, умениям и готовностям обучающихся, необходимым для освоения данной дисциплины состоят в следующем:

- знание основных положений физики об электричестве, математических основ вычислений:
- умение применять полученные знания для решения конкретных задач, связанных с анализом процессов в электрических цепях информационных систем;
- готовность к освоению новых знаний, касающихся электрических цепей информационных систем.

Дисциплина «Физические основы электротехники» является основой для последующего изучения дисциплин «Основы электроники», «Аппаратно-программные комплексы измерительных систем», «Информационно-измерительные системы», «Автоматизированные информационно-управляющие системы» и при выполнении выпускной квалификационной работы.

3 Компетенции обучающегося, формируемые в результате освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО, ПООП по направлению подготовки 09.03.02 «Информационные системы и технологии».

Общепрофессиональные компетенции выпускников и индикаторы их достижения

Код и наименовани	Код и наименование индикатора
компетенции	достижения бщепрофессиональной
	компетенции

ОПК-1.Способен применять	ИД-1 _{ОПК-1}		
естественнонаучные и	Знать: основы высшей математики, физики,		
общеинженерные знания, методы	вычислительной техники и программирования;		
математического анализа и	ИД-2 _{ОПК-1}		
моделирования, теоретического и	Уметь: решать стандартные профессиональные задачи с		
экспериментального	применением естественнонаучных и общеинженерных		
исследования в	знаний, методов математического анализа и		
профессиональной деятельности	моделирования;		
	ИД-3 _{ОПК-1}		
	Владеть: навыками теоретического и экспериментального		
	исследования объектов профессиональной деятельности.		

4 Структура и содержание дисциплины

4.1 Объем дисциплины по семестрам (курсам) и видам занятий в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 2 зачетных единиц (ЗЕ), или 72 часа.

06- 04	Всего часов	Семестры
Объем дисциплины		2
Общая трудоемкость дисциплины, в том числе:	72	72
1. Контактная работа обучающихся с	32,25	32,25
преподавателем (всего), в том числе:		
Лекции	16	16
лабораторные работы	-	-
практические занятия	16	16
иная контактная работа (ИКР)	0,25	0,25
консультация	-	-
2. Самостоятельная работа	31	31
3. Курсовой проект	-	-
4. Контроль	8,75	8,75
Вид промежуточной аттестации		Зачет

4.2 Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

Очная форма обучения

	Очная форма обучения						
$N_{\underline{0}}$	Раздел дисциплины	Общая	Контактная работа				Самосто-
п/п		трудоем-	Всего	Лекции	П3	ЛР	ятельная
		кость					работа
1	Введение. Основные определения	2	1	1	-	-	1
2	Типы электрических цепей. Типы	5	2	2	-	-	3
	элементов электрических цепей						
3	Основные законы электрических пепей	8	4	2	2	-	4
		2.1	4.4	-			1.0
4	Методы расчета электрических цепей	21	11	5	6	-	10

5	Преобразование электрических	7	4	2	2	-	3
	цепей						
6	Электрические цепи однофазного	8	4	2	2	-	4
	синусоидального тока						
7	Переходные процессы в линейных	12	6	2	4	-	6
	электрических цепях						
	Итого	63	32	16	16		22
	Контроль (зачет)	9					9
	Всего	72	32	16	16	-	31

4.3 Содержание разделов дисциплины 4.3.1 Лекционные занятия

No	Наименование	Содержание раздела	Трудоем-	Форми-	Форма
п/п	раздела		кость	руемые	контроля
	дисциплины		(час)	компе-	
				тенции	
1	Введение.	Определение электрической цепи и	1	ОПК-1	Зачет
	Основные	электрической схемы. Элементы			
	определения	электрических цепей. Графическое			
		изображение элементов в электрических			
		цепях			
2	Типы элементов	Активные и пассивные элементы.	2	ОПК-1	Зачет
	электрических	Линейны и нелинейные цепи.			
	цепей. Типы	Неразветвленные и разветвленные			
	электрических	цепи.			
	цепей.	Примеры электрических цепей.			
3	Основные	Закон Ома для участка цепи,	2	ОПК-1	Зачет
	законы	содержащей пассивные элементы. Закон			
	электрических	Ома для участка цепи, содержащей			
	цепей.	источники ЭДС. Первый закон			
		Кирхгофа для узла электрической цепи.			
		Второй закон Кирхгофа для замкнутого			
		контура электрической цепи.			
4	Методы расчета	Метод контурных токов. Входные и	5	ОПК-1	Зачет
	электрически х	взаимные проводимости ветвей			
	цепей	электрической цепи. Входное			
		сопротивление. Метод узловых			
		потенциалов.			
5	Преобразование	Замена нескольких параллельных	2	ОПК-1	Зачет
	электрических	ветвей, содержащих источники ЭДС и			
	цепей	тока, одной эквивалентной ветвью.			
		Преобразование электрической цепи			
		типа «звезда» в электрическую цепь			
		типа «треугольник». Преобразование			
		«треугольника» в «звезду».			
		Модификация методов расчета для			
		преобразованных цепей. Метод			
		эквивалентного генератора.			

6	Электрические	Основные величины,	2	ОПК-1	Зачет
	цепи	характеризующие синусоидальный			
	однофазного	ток. Среднее и действующее			
	синусоидального	значение синусоидального тока.			
	тока	Активное сопротивление, емкость и			
		индуктивность в цепи			
		синусоидального тока. Активная,			
		реактивная и полная мощности.			
		Законы Ома и Кирхгофа для цепей			
		синусоидального тока.			
7	Переходные	Определение переходного процесса.	2	ОПК-1	Зачет
	процессы в	Основные законы коммутации.			
	линейных	Понятие о переходной функции по			
	электрических	напряжению. Примеры расчета			
	цепях	переходных процессов в простейших			
		электрических цепях			

4.3.2 Практические занятия Целью практических занятий (ПЗ) является освоение и закрепление студентами теоретических положений дисциплины «Физические основы электротехники».

	тических положении дис		Трудоемкость	Форми-	Формы контроля
No			(час.)	руемые	
п/п			Очная форма	компе-	
				тенции	
	Закон Ома. Первый и	Раздел 3	2	ОПК-1	Результаты
	второй законы				выполнения задания
1	Кирхгофа.				практического
1					занятия в виде отчета,
					контрольные вопросы.
					Зачет
	Метод контурных	Раздел 4	6	ОПК-1	Результаты
	токов.				выполнения задания
	Входные и взаимные				практического
	проводимости ветвей				занятия в виде отчета,
2	электрической цепи.				контрольные вопросы.
	Входное				Зачет
	сопротивление.				
	Метод узловых				
	потенциалов.		0	OHIC 1	7
	Преобразование	Раздел 5	2	ОПК-1	Результаты
	электрических цепей				выполнения задания
3	для упрощения их				практического
	расчета				занятия в виде отчета,
					контрольные вопросы.
		D .		OFFIC 1	Зачет
	Основные величины,	Раздел 6	2	ОПК-1	Результаты
4	характеризующие				выполнения задания
	синусоидальный ток.				практического

					занятия в виде отчета,
					контрольные вопросы.
					Зачет
5	Переходные процессы	Раздел 7	4	ОПК-1	Результаты
	в линейных RC, RL и				выполнения задания
	LC электрических				практического
	цепях				занятия в виде отчета,
					контрольные вопросы.
					Зачет

4.3.3 Самостоятельная работа

Самостоятельная работа студентов по дисциплине «Физические основы электротехники» предназначена для развития у обучающихся навыков целенаправленного самостоятельного приобретения новых знаний и умений.

Самостоятельная работа включает в себя следующие составляющие:

- изучение теоретического материала по конспектам лекций;
- самостоятельное изучение дополнительных информационных ресурсов по темам разделов дисциплины, приведенных в п. 6 «Учебно-методическое обеспечение дисциплины»;
- выполнение заданий текущего контроля успеваемости (подготовка к практическим занятиям);
 - выполнение заданий по практическим занятиям;
 - итоговая аттестация по дисциплине (подготовка к зачету).

<u>Подготовка к выполнению заданий по практическим занятиям</u> предполагает изучение соответствующих разделов лекционного материала, учебного пособия, учебника и других источников из прилагаемого списка (п.6).

№	Тематика самостоятельной работы	Трудоемкость	Формируемые	Формы
п/п		(час.)	компетенции	контроля
	Подготовка по разделу 1	1	ОПК-1	ПЗ, зачет
	Введение. Основные определения [1,			
	2]			
	Подготовка по разделу 2	6	ОПК-1	ПЗ, зачет
	Типы электрических цепей. Типы			
	элементов электрических цепей [1-4]			
	Подготовка по разделу 3	9	ОПК-1	ПЗ, зачет
	Основные законы электрических			
	цепей [1-4]			
	Подготовка по разделу 4	18	ОПК-1	ПЗ, зачет
	Методы расчета электрических			
	цепей [1-4]			
	Подготовка по разделу 5	6	ОПК-1	ПЗ, зачет
	Преобразование электрических цепей			
	[1, 2]			
	Подготовка по разделу 6	9	ОПК-1	ПЗ, зачет
	Электрические цепи однофазного			
	синусоидального тока [1-3]			
	Подготовка по разделу 7	11	ОПК-1	ПЗ, зачет
	Переходные процессы в линейных			
	электрических цепях [1, 2]			

5 Оценочные материалы для проведения промежуточной аттестации обучающихся по дисциплине

Оценочные средства приведены в Приложении к рабочей программе дисциплины в документе «Оценочные материалы» по дисциплине «Физические основы электротехники».

6 Учебно-методическое обеспечение дисциплины

6.1 Основная учебная литература:

- 1. Зевеке Г.В., Ионкин П.А., Нетушил А.В., Страхов С.В. Основы теории цепей. 5-изд., перераб. М.: Энергоатомиздат, 1989. 527 с.
- 2. Бессонов Л.А. Теоретические основы электротехники, Электрические цепи. М.: Гардарики, 2002.-638 с.
- 3. Шестеркин А.Н .Введение в теорию электрических цепей: учеб. пособие/ Рязан. гос. радиотехн. ун-т. Рязань: РГРТУ, 2010. 56 с.
- 4. Дягилев А.А. Электротехника. Часть 1: / А.А. Дягилев, С.А. Круглов, А.А. Сережин; учеб. пособие Рязан. гос. радиотехн. ун-т. Рязань: РГРТУ, 2014. 80 с.

6.2 Дополнительная литература:

- 1. Попов В.П. Основы теории цепей: Учебник для вузов. М.: Высшая школа, 2003. 575 с.
- 2. 4537. Теоретические основы электротехники: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т.; сост. В. Н. Зуб, В. С. Литвинова, А. П. Мишачев. Рязань, 2011.-36 с.
- 3. 4390. Основы теории цепей: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т.; сост. С.М. Милюков. Рязань, 2010. 12 с.
- 6.3 Методические рекомендации по организации изучения дисциплины

Методически изучение дисциплины производится с применением активных форм проведения занятий. Принятая технология активного обучения базируется на работе, когда в процессе лекций и практических занятий, дополняемых самостоятельной работой обучаемых, выполняется серия расчетных заданий и экспериментов, решение которых студентами позволяет практически применить полученные знания, развить необходимые профессиональные и общекультурные компетенции по данной дисциплине.

После изучения отдельных разделов дисциплины осуществляется проведение текущего и рубежного контроля усвоения материала студентами путем тестовых вопросов.

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

Ресурсы информационно-телекоммуникационной сети «интернет». Обучающимся предоставлена возможность индивидуального доступа к следующим электронно-библиотечным системам.

- 1. Электронно-библиотечная система «Лань», режим доступа с любого компьютера РГРТУ без пароля. URL: https://e.lanbook.com/
- 2. Электронно-библиотечная система «IPRbooks», режим доступа с любого компьютера РГРТУ без пароля, из сети интернет по паролю. URL: https://iprbookshop.ru/.
- 3. Электронная библиотека ЮРАЙТ, режим доступа из сети интернет без пароля. URL: https://biblio-online.ru/info/free-books/.

- 8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем
- 8.1. Операционная система Windows XP (Microsoft Imagine, номер подписки ID 700565239, бессрочно).
- 8.2 Пакеты программного обеспечения общего назначения (текстовые редакторы, графические редакторы и др.).
- 8.3. Пакеты прикладных программ Ques или Mathead. Система Ques распространяется под лицензией GPL и доступна как пользователям OC Linux, так и пользователям MS Windows.

9. Материально-техническое обеспечение дисциплины

Для данной дисциплины применяется следующее материально-техническое обеспечение.

1. Лекционные занятия:

No	Наименование специальных	Перечень специализированного
	помещений и помещений для	оборудования
	самостоятельной работы	
1	Учебные аудитории для	1 проектор NEC NP 216 G,
	проведения занятий лекционного	1 экран, 1 компьютер Pentium G 620,
	типа, групповых и индивидуальных	маркерная доска, 32 ученических стола, 64
	консультаций, текущего контроля и	места
	промежуточной аттестации, № 254	Экран с ручным приводом – 1 шт.
	главного учебного корпуса	Доска маркерная 120х200 см
		Подключение к сети «Интернет» и обеспечение
		доступа в электронную информационно-
		образовательную среду РГРТУ.

2. Практические занятия и лабораторные работыв:

Специализированный класс персональных ЭВМ (лаборатории 118, 127, 111а).

3. Прочее:

Рабочее место преподавателя, оснащенное компьютером с доступом в Интернет.