МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Радиотехнических устройств»

«УТВЕРЖДАЮ» Проректор РОПиМД

> _/ А.В. Корячко 20 **№** г

«СОГЛАСОВАНО» Декан факультета ФРТ

/И.С. Холопов «26» 06 20 20 г

Заведующий кафедрой РТУ

«26» 06 2020 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.О.03 «Микросхемотехника»

Направление подготовки

11.03.01 Радиотехника

Направленность (профиль) подготовки Беспроводные технологии в радиотехнических системах и устройствах Радиофотоника

> Уровень подготовки **Бакалавриат**

Квалификация выпускника – бакалавр

Формы обучения - очная

Рязань 2020 г

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требований федерального государственного образовательного стандарта высшего образования по направлению подготовки 11.03.01 Радиотехника, утвержденного приказом Минобрнауки № 931 от 19.09.2017 г.

Разработчик

Старший преподаватель каф. РТУ

fring

В.А.Степашкин

Программа рассмотрена и одобрена на заседании кафедры РТУ 16 июня 2020 г. (протокол № 10).

Заведующий кафедрой РТУ

May

Ю.Н.Паршин

1. Цель и задачи освоения дисциплины

Цель освоения дисциплины: изучение студентами принципов построения интегральных схем, схемотехнических решений (электрических и структурных схем), используемых в интегральных микросхемах и радиоэлектронной аппаратуре на их основе, а также применения интегральных микросхем в различных микроэлектронных аналоговых устройствах. При изучении этой дисциплины закладываются основы знаний, позволяющих умело использовать современную элементную базу радиоэлектроники и понимать тенденции и перспективы ее развития и практического использования; приобретаются навыки расчета и экспериментального исследования различных функциональных каскадов на основе аналоговых интегральных микросхем.

Задачи модуля 1: изучить основные свойства компонентов интегральных микросхем и основные принципы архитектурного построения современных линейных интегральных микросхем.

Задачи модуля 2: изучить основную (классическую) схему дифференциального каскада, дифференциальный каскад с активной (динамической) нагрузкой, шумовые свойства и параметры дифференциального каскада и методы подачи сигнала на дифференциальный каскад.

Задачи модуля 3: изучить основные схемы базовых и вспомогательных каскадов аналоговых интегральных схем: входные и выходные каскады, источники тока (генераторы стабильного тока), источники напряжения и схемы сдвига (трансляторы) уровня.

Задачи модуля 4: изучить схемотехнику операционных усилителей, их общие характеристики, основные свойства и параметры, а также работу операционного усилителя с обратной связью.

Задачи модуля 5: изучить схемотехнику аналоговых устройств на основе операционных усилителей и методы их расчета (линейные и нелинейные схемы на базе операционных усилителей, активные фильтры).

Задачи модуля 6: изучить основную элементную базу электроники СВЧ, интегральные СВЧ транзисторы, монолитные интегральные микросхемы.

Задачи модуля 7: изучить основные проблемы повышения степени интеграции, основы функциональной электроники, основные принципы микросистемной техники и наноэлектроники.

2. Место дисциплины в структуре ОПОП

Дисциплина «Микросхемотехника» относится к обязательной части блока №1 дисциплин основных профессиональных образовательных программ (ОПОП) «Радиофотоника», «Беспроводные технологии в радиотехнических системах и устройствах», «Радиотехнические системы локации, навигации и телевидения» по направлению подготовки академического бакалавриата 11.03.01 Радиотехника.

Студенты, обучающиеся по данному курсу, должны предварительно изучить дисциплины «Физика», «Теория электрических цепей», входящие в обязательную часть вышеуказанных ОПОП, а также изучить дисциплину «Электроника», входящую в часть, формируемую участниками образовательных отношений вышеуказанных ОПОП.

Дисциплина «Микросхемотехника» является основой для дальнейшего изучения дисциплин профессионального цикла и подготовки выпускной работы.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО, ПООП (при наличии) по данному направлению подготовки, а также компетенций (при наличии), установленных университетом.

Профессиональные компетенции выпускников и индикаторы их достижения

Код	Формулировка компетенции	Индикаторы достижения			
ОПК-1	Способен использовать положения, законы и	ИД-1 _{ОПК-1} . Знает фундаментальные законы природы и основные физические и математические законы			
	методы естественных	ИД-2 _{ОПК-1} . Умеет применять физические законы и			
	наук и математики для решения задач	математические методы для решения задач теоретического и прикладного характера			
	инженерной	ИД-3 _{ОПК-1} . Владеет навыками использования знаний			
	деятельности	физики и математики при решении практических задач			

4. Структура и содержание дисциплины

4.1 Объем дисциплины по семестрам (курсам) и видам занятий в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 4 зачетные единицы (144 часов).

Вид учебной работы	Всего	Семестры
	часов	5
Аудиторные занятия (всего)	32,25	32,25
В том числе:		
Лекции	16	16
Лабораторные работы (ЛР)	16	16
Практические занятия (ПЗ)		
Семинары (С)		
Курсовой проект/(работа) (аудиторная нагрузка)		
Иные виды контактной работы	0,25	0,25
Самостоятельная работа (всего)	103	103
В том числе:		
Курсовой проект (работа) (самостоятельная рабо-		
та)		
Расчетно-графические работы		
Расчетные задания		
Реферат	24	24
Другие виды самостоятельной работы	79	79
Контроль	8,75	8,75
Вид промежуточной аттестации (Зачет, дифферен-		зачет
цированный Зачет, Зачет)		
Общая трудоемкость час	144	144
Зачетные Единицы Трудоемкости	4	4
Контактная работа (по учебным занятиям)	32	32

4.2. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

№ п/п	Тема	Общая трудоем кость,	Контактная работа обучающихся с преподавателем				Самост оятельн ая
		всего часов	всего	лекции	лаборат орные работы	практич еские занятия	работа обучаю щихся
1	2	3	4	5	6	7	8
	Всего	144	32,25	16	16		103
	Модуль 1 Введение. Основные схемотехнические направления построения аналоговых интегральных схем	8	2	2			6
1.1	Основные понятия и определения	4	1	1			3
1.2	Основные свойства компонентов интегральных микросхем. Основные принципы архитектурного построения современных линейных интегральных микросхем	4	1	1			3
	Модуль 2 Дифференциальный каскад (ДК) как основная схема каскада для интегральной схемы	17	3	3			14
2.1	Основная (классическая) схема дифференциального каскада		1	1			4
2.2	Дифференциальный каскад с активной (динамической) нагрузкой	5	1	1			4
2.3	Шумовые свойства и параметры дифференциального каскада	3.5	0.5	0.5			3
2.4	Методы подачи сигнала на диф- ференциальный каскад	3.5	0.5	0.5			3
	Модуль 3 Основные схемы базовых и вспо- могательных каскадов аналого- вых интегральных схем	22	7	7			15
3.1	Выходные каскады интегральных схем	4	1	1			3
3.2	Источники тока (генераторы стабильного тока (ГСТ))	5	2	2			3
3.3	Источники напряжения	4	1	1			3
3.4	Схемы сдвига уровня	4	1	1			3
3.5	Входные каскады интегральных схем	5	2	2			3
	Модуль 4 Схемотехника операционных усилителей	11	1	1			10
4.1	Общие характеристики	2.25	0.25	0.25			2

	операционных усилителей					
4.2	Основные свойства	2.25	0.25	0.25		2
	операционных усилителей					
4.3	Основные параметры	2.25	0.25	0.25		2
	операционных усилителей					
4.4	Работа операционного усилителя	4.25	0.25	0.25		4
	с обратной связью					
	Модуль 5	37	17	1	16	20
	Аналоговые устройства на осно-					
- 1	ве операционных усилителей	10.5	0.7	0.7		10
5.1	Линейные и нелинейные схемы	18.5	8.5	0.5	8	10
	на базе операционных					
5.2	усилителей и методы их расчета	18.5	8.5	0.5	8	10
3.2	Активные фильтры на базе операционных усилителей	18.3	8.3	0.3	0	10
	Модуль 6	16	2	2		14
	Микросхемы СВЧ диапазона	10	2	2		17
6.1	Общие положения	2.5	0.5	0.5		2
6.2	Элементная база электроники	4.5	0.5	0.5		4
	СВЧ					
6.3	Интегральные СВЧ транзисторы	4.5	0.5	0.5		4
6.4	Монолитные интегральные	4.5	0.5	0.5		4
	микросхемы					
	Модуль 7	24				24
	Проблемы повышения степени					
	интеграции. Основы					
	функциональной электроники.					
	Микросистемная техника и					
7.1	наноэлектроника	0				0
7.1	Проблемы повышения степени	8				8
7.2	Основи функциональной	8				8
7.2		O				0
7.3	электроники Микросистемная техника и	8				8
1.5	наноэлектроника	O				O
	Иные виды контактной работы	0,25	0,25			
	Контроль (зачет)	8,75	0,23			
	Bcero	144	32,25	16	16	103

4.3 Содержание дисциплины 4.3.1 Лекционные занятия

№ п/п	№ разд.	Темы лекционных занятий	Трудоем- кость (час.)	Формируемые компетенции	Форма контроля
	1	Модуль 1	2	ОПК-1	Зачет
		Введение. Основные схемотехни-			
		ческие направления построения			
		аналоговых интегральных схем			
1	1.1	Основные понятия и определения	1	ОПК-1	Зачет
	1.2	Основные свойства компонентов	1	ОПК-1	Зачет
		интегральных микросхем. Основ-			

	1				<u> </u>
		ные принципы архитектурного			
		построения современных линей-			
	_	ных интегральных микросхем			-
	2	Модуль 2	3	ОПК-1	Зачет
		Дифференциальный каскад (ДК)			
		как основная схема каскада для			
		интегральной схемы			
2	2.1	Основная (классическая) схема	1	ОПК-1	Зачет
		дифференциального каскада			
	2.2	Дифференциальный каскад с ак-	1	ОПК-1	Зачет
		тивной (динамической) нагрузкой			
3	2.3	Шумовые свойства и параметры	0.5	ОПК-1	Зачет
		дифференциального каскада			
	2.4	Методы подачи сигнала на диффе-	0.5	ОПК-1	Зачет
		ренциальный каскад	0.2		34 101
	3	Модуль 3	7	ОПК-1	Зачет
		Основные схемы базовых и вспо-	,	OHK 1	Sa tem
		могательных каскадов аналоговых			
		интегральных схем			
3	3.1	1	1	ОПК-1	Зачет
)	3.1	Выходные каскады интегральных	1	OHK-1	34401
1	3.2	CXEM	2	ОПК-1	20220
4	3.2	Входные каскады интегральных	2	OHK-1	Зачет
	2.2	cxem		OHIC 1	2
6	3.3	Источники тока (генераторы ста-	2	ОПК-1	Зачет
	1	бильного тока (ГСТ))			
7	3.4	Источники напряжения	1	ОПК-1	Зачет
	3.5	Схемы сдвига уровня	1	ОПК-1	Зачет
	4	Модуль 4			
		Схемотехника операционных уси-	1	ОПК-1	Зачет
		лителей			
7	4.1	Общие характеристики	0.25	ОПК-1	Зачет
		операционных усилителей			
8	4.2	Основные свойства операционных	0.25	ОПК-1	Зачет
		усилителей			
	4.3	Основные параметры	0.25	ОПК-1	Зачет
		операционных усилителей			
9	4.4	Работа операционного усилителя с	0.25	ОПК-1	Зачет
		обратной связью			
	5	Модуль 5			
		Аналоговые устройства на основе	1	ОПК-1	Зачет
		операционных усилителей	-		
11	5.1	Линейные и нелинейные схемы на	0.5	ОПК-1	Зачет
**		базе операционных усилителей и	0.5		34 101
		методы их расчета			
	5.2	Активные фильтры на базе	0.5	ОПК-1	Зачет
	3.2	операционных усилителей	0.5	OHN-1	Janci
	6	Модуль 6	2		
	U	· ·•	4	ОПК-1	Зачет
					i l
12	6 1	Микросхемы СВЧ диапазона	0.5	ОП/ 1	2 _{ovro}
13	6.1	Общие положения	0.5	ОПК-1	Зачет
13 14	6.1 6.2 6.3		0.5 0.5 0.5	ОПК-1 ОПК-1 ОПК-1	Зачет Зачет Зачет

6.4	Монолитные	интегральные	0.5	ОПК-1	Зачет
	микросхемы				

4.3.2 Лабораторные работы

№ π/π	№ разд.	Темы лабораторных работ	Трудоем- кость (час.)	Формируемые компетенции	Форма контроля
1	5.1	Исследование неинвертирующих усилителей на операционном усилителе	4	ОПК-1	Зачет
2	5.1	Исследование инвертирующих усилителей на операционном усилителе	4	ОПК-1	Зачет
3	5.2	Исследование активных фильтров нижних и верхних частот на операционном усилителе	4	ОПК-1	Зачет
4	5.2	Исследование полосового и режекторного активных фильтров на операционном усилителе	4	ОПК-1	Зачет

4.3.3 Самостоятельная работа

№ разд.	Темы лекционных занятий	Трудоем- кость (час.)	Формируемые компетенции	Форма контроля
	Модуль 1	6	ОПК-1	Зачет
1	Введение. Основные схемотехниче-			
	ские направления построения анало-			
	говых интегральных схем			
1.1	Основные понятия и определения	3	ОПК-1	Зачет
1.2	Основные свойства компонентов ин-			
	тегральных микросхем. Основные			
	принципы архитектурного построе-	3	ОПК-1	Зачет
	ния современных линейных инте-			
	гральных микросхем			
2	Модуль 2	14	ОПК-1	Зачет
	Дифференциальный каскад (ДК) как			
	основная схема каскада для инте-			
	гральной схемы			
2.1	Основная (классическая) схема диф-	4	ОПК-1	Зачет
	ференциального каскада			
2.2	Дифференциальный каскад с актив-	4	ОПК-1	Зачет
	ной (динамической) нагрузкой			
2.3	Шумовые свойства и параметры	3	ОПК-1	Зачет
	дифференциального каскада			
2.4	Методы подачи сигнала на диффе-	3	ОПК-1	Зачет
	ренциальный каскад			
3	Модуль 3	<i>15</i>	ОПК-1	Зачет
	Основные схемы базовых и вспомо-			
	гательных каскадов аналоговых ин-			
	тегральных схем			

3.1	Выходные каскады интегральных схем	3	ОПК-1	Зачет
3.2	Источники тока (генераторы стабильного тока (ГСТ))	3	ОПК-1	Зачет
3.3	Источники напряжения	3	ОПК-1	Зачет
3.4	Схемы сдвига уровня	3	ОПК-1	Зачет
3.5	Входные каскады интегральных схем	3	ОПК-1	Зачет
4	Модуль 4 Схемотехника операционных усили- телей	10	ОПК-1	Зачет
4.1	Общие характеристики операционных усилителей	2	ОПК-1	Зачет
4.2	Основные свойства операционных усилителей	2	ОПК-1	Зачет
4.3	Основные параметры операционных усилителей	2	ОПК-1	Зачет
4.4	Работа операционного усилителя с обратной связью	4	ОПК-1	Зачет
5	Модуль 5 Аналоговые устройства на основе операционных усилителей	20	ОПК-1	Зачет
5.1	Линейные и нелинейные схемы на базе операционных усилителей и методы их расчета	10	ОПК-1	Зачет
5.2	Активные фильтры на базе операционных усилителей	10	ОПК-1	Зачет
6	Модуль 6 <i>Микросхемы СВЧ диапазона</i>	14	ОПК-1	Зачет
6.1	Общие положения	2	ОПК-1	Зачет
6.2	Элементная база электроники СВЧ	4	ОПК-1	Зачет
6.3	Интегральные СВЧ транзисторы	4	ОПК-1	Зачет
6.4	Монолитные интегральные микросхемы	4	ОПК-1	Зачет
7	Модуль 7 Проблемы повышения степени интеграции. Основы функциональной электроники. Микросистемная техника и наноэлектроника	24	ОПК-1	Зачет
7.1	Проблемы повышения степени интеграции	8	ОПК-1	Зачет
7.2	Основы функциональной электроники	8	ОПК-1	Зачет
	Микросистемная техника и наноэлектроника	8	ОПК-1	Зачет

5. Оценочные материалы для проведения промежуточной аттестации обучающихся по дисциплине

Оценочные материалы для проведения промежуточной аттестации обучающихся по дисциплине приведены в Приложении к рабочей программе дисциплины.

6. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Основная учебная литература:

- 1. Легостаев Н.С. Микросхемотехника. Аналоговая микросхемотехника [Электронный ресурс]: учебное пособие / Н.С. Легостаев, К.В. Четвергов. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, 2014. 238 с. 978-5-86889-677-4. Режим доступа: http://www.iprbookshop.ru/72130.html
- 2. Чижма С.Н. Электроника и микросхемотехника [Электронный ресурс] : учебное пособие / С.Н. Чижма. Электрон. текстовые данные. М. : Учебно-методический центр по образованию на железнодорожном транспорте, 2012. 359 с. 978-5-89035-649-9. Режим доступа: http://www.iprbookshop.ru/16275.html
- 3. Троян П.Е. Микроэлектроника [Электронный ресурс] : учебное пособие / П.Е. Троян. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, 2007. 346 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/13947.html
- 4. Полевский В.И. Операционные усилители [Электронный ресурс] : учебное пособие / В.И. Полевский, Е.Г. Касаткина. Электрон. текстовые данные. Новосибирск: Новосибирский государственный технический университет, 2013. 27 с. 978-5-7782-2310-3. Режим доступа: http://www.iprbookshop.ru/45124.html
- 5. Микросхемотехника: метод. указ. к контр. работе / В.А.Степашкин. Рязань: РГРТУ, $2020.\,64$ с.
- 6. Линейные усилители и активные фильтры : метод. указ к лаб. работам / Степашкин В.А., Озеран С.П. ; РГРТУ. Рязань, 2014. 64 с.

6.2. Дополнительная учебная литература:

- 1. Алексенко А.Г. Основы микросхемотехники. М.: Техносфера, 2003. 312 с.
- 2. Ульрих Титце Полупроводниковая схемотехника. Том I [Электронный ресурс] / Титце Ульрих, Шенк Кристоф. Электрон. текстовые данные. Саратов: Профобразование, 2017. 826 с. 978-5-4488-0052-8. Режим доступа: http://www.iprbookshop.ru/63579.html
- 3. Ульрих Титце Полупроводниковая схемотехника. Том II [Электронный ресурс] / Титце Ульрих, Шенк Кристоф. Электрон. текстовые данные. Саратов: Профобразование, 2017. 940 с. 978-5-4488-0059-7. Режим доступа: http://www.iprbookshop.ru/63580.html
- 4. Степаненко И.П. Основы микроэлектроники: учеб. пособие для вузов. М.: Лаборатория базовых знаний, 2001. 488 с.: ил.
- 5. Шило В.Л. Линейные интегральные схемы в радиоэлектронной аппаратуре. . М.: Советское радио, 1979. 368 с.
 - 6. Аваев Н.А., Наумов Ю.Е., Фролкин В.Т. Основы микроэлектроники, 1991. 288 с.
 - 7. Мошиц Г., Хорн П. Проектирование активных фильтров. М.: Мир. 1984. 320 с.
- 8. Гребен А.Б. Проектирование аналоговых интегральных схем. М.: Энергия, 1976. 256 с.
- 9. Щука А.А. Электроника: учеб. пособие для вузов. СПб.: БХВ-Петербург, 2006. $800~\rm c.$
- 10. Микросхемотехника и наноэлектроника : учеб. пособие / Игнатов Александр Николаевич. СПб. : Лань, 2011. 528с.

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

1. Электронно-библиотечная система «IPRbooks» [Электронный ресурс]. – Режим доступа: доступ из корпоративной сети РГРТУ – свободный, доступ из сети Интернет – по паролю. – URL: https://iprbookshop.ru/.

2. Электронно-библиотечная система издательства «Лань» [Электронный ресурс]. – Режим доступа: доступ из корпоративной сети РГРТУ – свободный, доступ из сети Интернет – по паролю. – URL: https://www.e.lanbook.com.

3. Электронная библиотека РГРТУ [Электронный ресурс]. – Режим доступа: из корпоративной сети РГРТУ – по паролю. – URL: http://elib.rsreu.ru/

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости)

1. Операционная система Windows XP (Microsoft MSDN AA, номер подписки 700102019, бессрочно);

2. LibreOffice (свободное ПО, Mozilla Public License 2.0, GNU Lesser General Public License 2.1, GNU Lesser General Public License 3.0, GNU General Public License 3.0);

3. SumatraPDF (свободное ПО, GNU GPLv3);

 Kaspersky Endpoint Security Коммерческая лицензия на 1000 компьютеров №2304-180222-115814-600-1595).

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

- 1. Аудитория 413к2. Учебная аудитория для проведения занятий лекционного и семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. 60 мест, 1 мультимедиа проектор, 1 экран, компьютер, специализированная мебель, маркерная доска.
- 2. Аудитория 415к2. Учебная аудитория для проведения занятий лекционного и семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. 50 мест, 1 мультимедиа проектор, 1 экран, компьютер, специализированная мебель, маркерная доска.
- Аудитории 412к2. Лаборатория электроники и микросхемотехники для проведения занятий по профильным дисциплинам, групповых и индивидуальных консультаций, а также для самостоятельной работы студентов. Оборудование: учебнолабораторные стенды по электронике со сменными панелями, генераторы сигналов, милливольметры двухканальные, мультиметры, частотомеры, вольтметры универсальные.
- 4. Аудитория 410к2. Помещение для хранения и профилактического обслуживания учебного оборудования. Шкафы, стеллажи для хранения учебного оборудования, контрольно-измерительная техника и инструменты для профилактического обслуживания учебного оборудования.

Программу составил Старший преподаватель кафедры РТУ

В.А.Степашкин