МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Электронные приборы»

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.О.07 «Проектирование и технология электронной компонентной базы»

Направление подготовки 11.04.04 «Электроника и наноэлектроника»

Направленность (профиль) подготовки Электронные приборы и устройства

Уровень подготовки Магистратура

Квалификация выпускника – магистр

Форма обучения - очная

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требований федерального государственного образовательного стандарта высшего образования по направлению подготовки (специальности) 11.04.04 «Электроника и наноэлектроника»,

утвержденного 22.09.2017 №959

Разработчики к.т.н., доцент кафедры «Электронные приборы»

А.Е. Серебряков

Программа рассмотрена и одобрена на заседании кафедры

«<u>09</u>» <u>06</u> 20<u>20</u> г., протокол № <u>6</u>

Заведующий кафедрой «Электронные приборы»

д.ф. - м.н., профессор

М.В. Чиркин

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы бакалавриата

Рабочая программа по дисциплине «Проектирование и технология электронной компонентной базы» (Б1.О.07) является составной частью основной профессиональной образовательной программы (ОПОП) академической магистратуры, разработанной в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 11.04.04 «Электроника и наноэлектроника» (уровень магистратуры), утвержденным приказом Минобрнауки России от 30.10.2014 № 1407.

Цель освоения дисциплины - решение задач проектирования современной электронной компонентной базы на основе микроконтроллеров и ПЛИС для решения научно-исследовательских и производственных задач.

Задачи дисциплины:

- ознакомить студентов с основными классами СБИС и наиболее распространенными технологиями реализации цифровых устройств, характерными для отечественной практики их разработки.
- привить навыки работы в коллективе над поставленными научными и проектными задачами;
 - ознакомить студентов с особенностями архитектуры ARM;
 - ознакомить студентов с семейством современных микроконтроллеров STM32.
- ознакомить студентов с основными системными (языки описания аппаратуры) и прикладными (пакеты САПР) инструментами разработчика.
- обеспечить освоение на практике использования базовых синтаксических конструкций языка Verilog для формирования типовых цифровых узлов и построение испытательных файлов (testbench).

-ознакомить с технологией функционального моделирования проектируемых устройств и аппаратного конфигурирования их в ПЛИС в лабораторных условиях.

Перечень планируемых результатов обучения по дисциплине

	Код и наименование обще-	Код и наименование инди-
профессиональных компе-	профессиональной компе-	катора достижения обще-
тенций	тенции	профессиональной компе-
		тенции
ОК-2	УК- 2Способен управлять	Знать: особенности
	проектом на всех этапах	применения
	его жизненного цикла	микроконтроллеров на
		базе архитектуры ARM;
		сильные и слабые
		стороны разработанного
		решения
		<u>Уметь:</u> защищать
		принятые решения при
		проектировании
		электронного устройства
		на базе
		микроконтроллеров
		<u>Владеть</u> : навыками
		поэтапного ведения
		проектов

2. Место дисциплины в структуре ОПОП бакалавриата

Дисциплина «Проектирование и технология электронной компонентной базы» (Б1.О.07) является обязательной, относится к базовой части блока 1 дисциплин ОПОП «Электронные приборы и устройства» по направлению подготовки 11.04.04 «Электроника и наноэлектроника» ФГБОУ ВО «РГРТУ».

Дисциплина изучается по очной форме обучения на 1 курсе в 1 семестре.

Пререквизиты дисциплины. Дисциплина «Проектирование и технология электронной компонентной базы» (Б1.В.04) базируется на следующих дисциплинах учебного плана подготовки бакалавров по направлению 11.03.04 «Электроника и наноэлектроника», ОПОП «Электронные приборы и устройства»: «Основы проектирования электронной компонентной базы».

До начала изучения учебной дисциплины обучающиеся должны:

знать: общие разделы высшей математики (алгебра), разделы информатики (системы счисления, двоичная арифметика, Булева алгебра, логические элементы. Существующие классы СБИС, как основной современной электронной компонентной базы, общий алгоритм проектирования СБИС; синтаксис языка описания аппаратуры высокого уровня Verilog, назначение и структуру испытательных файлов на языке Verilog, основные компоненты и внутреннюю архитектуру современных ПЛИС.

уметь: использовать современные информационные и компьютерные технологии, средства коммуникаций, способствующие повышению эффективности научной и образовательной сфер деятельности; разрабатывать физические и математические модели приборов и устройств электроники и наноэлектроники; разрабатывать технологические маршруты их изготовления; применять язык Verilog, как системное инструментальное средство для проектирования цифровых устройств, применять стандартные САПР для функционального моделирования, синтеза и верификации цифровых устройств; использовать двоичную арифметику и Булеву алгебру;

владеть: методами проектирования электронной компонентной базы и технологических процессов электроники и наноэлектроники; методами математического моделирования приборов и технологических процессов с целью оптимизации их параметров; навыками экспериментального исследования разработанных устройств в аппаратной реализации, азами программирования на языке высокого уровня.

Взаимосвязь с другими дисциплинами. Требования к входным знаниям совпадают с требованиями к освоению перечисленных выше предшествующих дисциплин ОПОП подготовки бакалавров по направлению 11.03.04 «Электроника и наноэлектроника», ОПОП «Электронные приборы и устройства». Дисциплина «Электронные устройства в инерциальных технологиях» содержательно и методологически взаимосвязана с указанными дисциплинами.

Постреквизиты дисциплины. Дисциплина «Проектирование и технология электронной компонентной базы» является основой для дальнейшего изучения дисциплин: «Научно-исследовательская работа», «Преддипломная практика», «Выпускная квалификационная работа».

3. Объем дисциплины и виды учебной работы

Общая трудоемкость (объем) дисциплины составляет 5 зачетные единицы (ЗЕ), 180 часов.

Вид учебной работы	Всего часов		
	Очная форма	Очно- заочная форма	Заочная форма
Общая трудоемкость дисциплины, в том числе:	180	-	-
Контактная работа обучающихся с преподавателем (всего), в том числе:	54	-	-
Лекции	26	-	-

Лабораторные работы	18	-	-
Практические занятия	10	-	-
Самостоятельная работа обучающихся (всего), в	126	-	-
том числе:			
Курсовой проект/ курсовая работа	-	-	-
Подготовка к экзамену, консультации	40,5	-	-
Консультации в семестре	7	-	-
Иные виды самостоятельной работы	78,5	-	-
Вид промежуточной аттестации обучающихся:	экзамен	-	-

4. Содержание дисциплины

4.1. Содержание дисциплины, структурированное по темам (разделам)

Тема 1. Электронная компонентная база.

Понятие электронной компонентной базы. Электронные компоненты с наноразмерными структурами. Телекоммуникационные оптические приемники и передатчики, кремниевые СБИС (VLSI). Основные классы СБИС. Заказные ИС (ASIC), универсальные СБИС (MCU, DSP), ПЛИС (FPGA).

Тема 2. Основы языка высокого уровня Си. Компиляция проектов.

Переменные и арифметика. Типы и размеры данных. Константы. Оператор for. If-else. Переключатели. Циклы. Символические константы. Массивы. Функции. Компилятор GCC. Структуры. Указатели. Среда разработки кода микропрограмм для микроконтроллера смейства STM32

Тема 3. Архитектура микроконтроллеров на основе ядра ARM

Особенности архетиктуры ARM. Структурная схема микроконтроллеров семейства STM32. Особенности и классификация вычислительных ядер серии Cortex. Библиотека конфигурации ядра CMSIS. Библиотечная система периферийных устройств stdlibrary. Конфигурирование проектов и программирование микроконтроллера.

Тема 4. Проектирование электронных устройств на основе микроконтроллеров

Особенности аналоговых и цифровых цепей питания микроконтроллера. Методы снижения индуктивности цепей питания. Схемы тактирование микроконтроллера. Типовые схемы подключения нагрузки цифровых портов ввода/вывода. Схемы подключения аналого-цифрового преобразователя. Схемы подключения цифро-аналогово преобразователя. Интерфейсы I2C, SPI, UARTю

Тема 5. Архитектура ПЛИС типа CPLD и FPGA

Основные архитектурные отличия ПЛИС типа CPLD и FPGA. Преимущества и недостатки архитектуры FPGA. Основные компоненты микросхем FPGA. Структурная схема логического элемента. Блоки памяти. Аппаратные умножители. Структура межсоединений. Система синхронизации. Блоки ввода/вывода. Простейшие интерфейсные стандарты.

Тема 6. Основные синтаксические конструкции последовательностных устройств

Понятие синхронизации. Синхронные и асинхронные цифровые устройства. Синхроимпульсы. Процедурные операторы, применение в конструкторском файле. Процедурное управление временем. Список реагирования процедурного оператора. Реагирование на фронты

синхроимпульсов. Управляющие процедурные операторы. Условный оператор. Простой синхронный D-триггер. Двоичный счетчик. Счетчик по указанному модулю. Оператор варианта. Регистр сдвига. Комбинационные устройства на базе процедурных операторов, специфические дешифраторы. Циклические операторы. Процедурные операторы присваивания. Моделирование синхронных цифровых устройств. Задание синхроимпульсов в испытательном файле. Инициализирующие значения сигналов. Функции в языке Verilog.

Тема 7. Способы конфигурирования ПЛИС

Системы хранения конфигурационных данных ПЛИС типа CPLD и FPGA. Интерфейс JTAG. Конфигурирование в системе. Аппаратное обеспечение процесса конфигурирования.

Тема 8. Синтезируемые и не синтезируемые конструкции

Синтезируемые и не синтезируемые конструкции языка Verilog. Блок generate. Сущность и назначение не синтезируемых элементов. Директивы компилятора. Системные задачи. Масочные варианты реализации проектов цифровых устройств на ПЛИС, преимущества и недостатки.

4.2. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах).

№ п/п	Тема	Общая трудое мкость всего	Контактная работа обучающихся с преподавателем			Самостоятельная работа обучающихся	
		часов	Всего	лекции	Практ	лабор	
1	Электронная компонентная база.	7	2	2	-	-	5
2	Основы языка высокого уровня Си. Компиляция проектов.	23	8	4	-	4	15
3	Архитектура микроконтроллеров на основе ядра ARM	19	14	4	2	8	5
4	Проектирование электронных устройств на основе микроконтроллеров	27	10	4	6	-	17
5	Архитектура ПЛИС типа CPLD и FPGA	13	8	4	-	4	5
6	Основные синтаксические конструкции последовательностных устройств	24	4	4	-	-	20
7	Способы конфигурирования ПЛИС	11	6	2	2	2	5
8	Синтезируемые и не синтезируемые конструкции	8,5	2	2	-	-	6,5
9	Консультации в семестре	7	-	-	-	-	7
10	Экзамены и консультации	40,5	-	-	-	-	40,5
	Bcero:	108	54	26	10	18	126

4.3 Виды практических, лабораторных и самостоятельных работ

№ п/п	Тема	Вид работы	Наименование и содержание работы	Трудо- емкость , часов
1	Электронная компонентная база.	Самостоятельная работа обучающегося	Изучение конспекта лекций.	5
2	Основы языка высокого уровня Си. Компиляция	Лабораторная работа	Конфигурирование и компиляция проекта	4
	проектов.	Самостоятельная работа обучающегося	Указатели на функцию. Методы разыменовывания указателей и функций. Модель памяти языка Си. Подготовка к ЛР. Подготовка к сдаче ЛР, оформление отчета	15
3	Архитектура микро- контроллеров на ос- нове ядра ARM	Лабораторная работа	1) Вывод графической информации 2) Обмен данными с акселерометром	8
		Самостоятельная работа обучающегося	Модуль прерываний. Модуль прямого доступа к памяти. Интерфейсы ввода/вывода. Подготовка к ЛР. Подготовка к сдаче ЛР, оформление отчета.	5
		Практическая работа	Вычисление параметров конфигурирования PLL	2
4	Проектирование электронных устройств на основе микроконтроллеров	Самостоятельная работа обучающегося	Аналоговые цепи обеспечения опарного напряжения аналогоцифрового и цифро-аналогово преобразователя. Особенности проектирования цепей питания на печатных платах. Изучение конспекта лекций.	17
		Практическая работа	Разработка принципиальной электрической схемы электронного устройства	6
5	Архитектура ПЛИС типа CPLD и FPGA	Самостоятельная работа обучающегося	Изучение конспекта лекций. Подготовка к ЛР. Подготовка к сдаче ЛР, оформление отчета.	5
		Лабораторная работа	Разработка параметризированного модуля	4
6	Основные синтаксические конструкции последовательностных устройств	Самостоятельная работа обучающегося	Понятие синхронизации. Синхронные и асинхронные цифровые устройства. Синхроимпульсы. Процедурные операторы, применение в конструкторском файле. Изучение конспекта лекций.	20
7	Способы конфигурирования	Лабораторная работа	Аппаратная реализация параметризированного модуля	2

№ п/п	Тема	Вид работы	Наименование и содержание работы	Трудо- емкость , часов
	ПЛИС	Самостоятельная	Аппаратное обеспечение	5
		работа	процесса конфигурирования.	
		обучающегося	Подготовка к ЛР. Подготовка к	
			сдаче ЛР, оформление отчета	
		Практическая	Подготовка модулей на языке	2
		работа	Verilog	
8	Синтезируемые и не	Самостоятельная	Директивы компилятора.	6,5
	синтезируемые	работа	Системные задачи.	
	конструкции	обучающегося	Изучение конспекта лекций.	
9	Консультации в	Самостоятельная	Изучение конспекта лекций.	7
	семестре	работа		
		обучающегося		

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- 1. Амосов В.В. Схемотехника и средства проектирования цифровых устройств. СПб.: "БХВ-Петербург", 2007. 560 с.
- 2. Аверченков, О.Е. Особенности программирования однокристалльной ВМ х51 на языке Си [Электронный ресурс] : учебное пособие / О.Е. Аверченков. Электрон. дан. Москва : ДМК Пресс, 2012. 110 с. Режим доступа: https://e.lanbook.com/book/4142
- 3. Стешенко, В.Б. ПЛИС фирмы Altera: элементная база, система проектирования и языки описания аппаратуры [Электронный ресурс] / В.Б. Стешенко. Электрон. дан. Москва: ДМК Пресс, 2010. 573 с. Режим доступа: https://e.lanbook.com/book/60976.

Перечень учебно-методического обеспечения лабораторных занятий

- 1. Ашихмин А.С. Основы проектирования электронной компонентной базы: Методические указания к лабораторным работам. Ч.1/ РГРТУ, 2012–36 с.
- 2. Базылев В.К. Микропроцессорные системы сбора и обработки данных: Методические указания к лабораторным работам / РГРТУ. Рязань, 2012. 56 с

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств приведен в приложении к рабочей программе дисциплины (см. документ «Оценочные материалы по дисциплине «Проектирование и технология электронной компонентной базы»).

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная учебная литература:

- 1. Угрюмов Е.П. Цифровая схемотехника. СПб.: БХВ Санкт-Петербург, 2014. 528с.
- 2. Ашихмин А.С. Основы проектирования электронной компонентной базы: Методические указания к лабораторным работам. Ч.1/РГРТУ, 2012—36 с.
- 3. Базылев В.К. Микропроцессорные системы сбора и обработки данных: Методические указания к лабораторным работам / РГРТУ. Рязань, 2012. 56 с.

Дополнительная учебная литература:

- 1. Организация ЭВМ, 5-е изд. / К. Хамахер, 3. Вранешич, С. Заки. СПб.: Питер ВХВ, 2003.-848 с.
- 2. Немудров В., Мартин Г. Системы-на-кристалле. Проектирование и развитие. М.: "Техносфера", 2004.-216 с.
- 3. Ашихмин А.С. Цифровая схемотехника. Шаг за шагом. М.: Издательство "Диалог-МИФИ", 2008.-304 с.

8. Перечень ресурсов информационно-телекоммуникационной сети Интернет, необходимых для освоения дисциплины

Электронные образовательные ресурсы:

- 1. ModelSim® User's Manual. Software Version 6.5a. Mentor Graphics Corporation, 2011. 580 р. [электронное издание] URL: https://www.xilinx.com/Attachment/modelsim.pdf
- 2. Quartus II Vertion 10.0 Handbook. Altera Corporation, 2010. 2728 р. [электронное издание] URL: https://www.altera.com/ja JP/pdfs/literature/hb/qts/qts qii5v2 03.pdf
- 3. Электронно-библиотечная система «IPRBook». ЭБС издательства «IPRBook» [Электронный ресурс]. URL: http://iprbookshop.ru/
- 4. Электронно-библиотечная система «Лань». ЭБС издательства «Лань» [Электронный ресурс]. URL: http://e.lanbook.com

9. Методические указания для обучающихся по освоению дисциплины

Материал каждой лекции рекомендуется изучать в день ее прочтения лектором, когда она еще не забыта. При этом необходимо использовать конспект и рекомендованную литературу. Использовать литературу необходимо для углубленного изучения материала лекции и для уточнения тех мест, которые в конспекте оказались записаны недостаточно понятно. В конспекте каждой лекции необходимо оставлять чистое место и конспектировать в нем изученную литературу, чтобы при подготовке к текущей, промежуточной или итоговой аттестации можно было повторить всю тему. Лектором в течение всего семестра проводятся консультации по лекционному материалу.

Каждую тему, предусмотренную планом самостоятельной работы, следует изучать самостоятельно в течение отведенных для ее изучения двух недель с помощью рекомендованной литературы. Все возникающие при этом вопросы надо записывать, чтобы получить на них ответы на консультации. По каждой теме для каждой учебной группы лектор проводит консультации в конце ее изучения (один раз в две недели).

К каждой лабораторной работе надо готовиться с помощью конспекта лекций по теме работы, изучения рекомендованной литературы и методических рекомендаций к лабораторным работам. Необходимо подготовить и шаблон отчета, чтобы за время, отведенное для выполнения работы, можно было оформить отчет, защитить и сдать его.

Отчет о лабораторной работе должен содержать следующие элементы:

- номер, название и цель работы;
- чертеж функциональной схемы установки, выполненный карандашом по линейке либо при помощи соответствующей компьютерной программы;
 - основные расчетные соотношения;
 - таблицы результатов экспериментов, выполненные карандашом по линейке;
- графики экспериментальных зависимостей, полученных при выполнении лабораторной работы;
- выводы, содержащие анализ экспериментальных зависимостей, сравнение результатов, полученных в работе, с данными справочной литературы.

При выполнении лабораторной работы каждому студенту необходимо иметь полностью оформленный отчет о ранее выполненной работе и отчет о выполняемой работе, содержащий все перечисленные элементы (за исключением экспериментальных данных в таблице, графиков, выводов). При несоблюдении указанных требований студент к лабораторной работе не допускается.

Практическая работа студента заключается в решении или выполнении типовых задач и заданий. Каждое решение должно быть оформлено в виде отчета и должно содержать следующие элементы:

- -титульный лист;
- -начальное данные;
- -решение задачи или результат выполненного задания.

В конце семестра при подготовке к аттестации студент должен повторить изученный в семестре материал и в ходе повторения обобщить его, сформировав цельное представление о нем. Следует иметь в виду, что на подготовку к промежуточной аттестации времени бывает очень мало, поэтому начинать эту подготовку надо заранее, не дожидаясь последней недели семестра.

Следует всегда помнить, что залог успеха студента в учебе – планомерная работа в течение всего семестра и своевременное выполнение всех видов работы.

Самостоятельная работа как вид учебной работы может использоваться на лекциях и практических занятиях, а также иметь самостоятельное значение — внеаудиторная самостоятельная работа обучающихся — при подготовке к лекциям, практическим занятиям, а также к теоретическому зачету.

Основными видами самостоятельной работы по дисциплине являются:

- самостоятельное изучение отдельных вопросов по темам самостоятельных работ (п.4.3);
- подготовка к защите практического задания, оформление отчета.
- подготовка к защите лабораторных работ, оформление отчета.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

В соответствии с требованиями ФГОС ВО по направлению подготовки бакалавров 11.04.04 «Электроника и наноэлектроника», при изучении студентами дисциплины «реализация компетентностного подхода предусматривает широкое использование в учебном процессе активных и интерактивных технологий проведения занятий в сочетании с внеаудиторной работой преподавателя и студента.

Изучение дисциплины предусматривает применение активных форм проведения занятий с целью формирования и развития общекультурных, общепрофессиональных и профессиональных компетенций обучающихся.

При проведении самостоятельной работы обучающихся используются следующие информационные технологии:

- доступ в сеть Интернет, обеспечивающий, поиск актуальной научно-методической и научно-технической информации;
- необходимое программное обеспечение для выполнения программы дисциплины, установленное в вузе, а также для выполнения самостоятельной работы в домашних условиях;

При организации самостоятельной работы студентов используется комплекс учебных и учебно-методических материалов в сетевом доступе (программа, методические пособия, список рекомендуемых источников литературы и информационных ресурсов, задания в тестовой форме и вопросы для самоконтроля).

Принятая технология обучения базируется на интерактивной работе в аудитории, когда в процессе лекций, лабораторных и практических занятий, дополняемых самостоятельной работой обучаемых, в том числе и с участием преподавателя, выполняется серия экспресс-заданий, совокупность которых позволяет практически применить полученные знания, развивая компетенции, предусмотренные для данной дисциплины.

Проведение ряда занятий осуществляется с использованием компьютеров и мультимедийных средств, наглядных пособий.

Перечень лицензионного программного обеспечения:

- 1) Операционная система Windows XP (лицензия Microsoft DreamSpark Membership ID 700102019);
- 2) Свободно распространяемый офисный пакет LibreOffice (лицензия LGPL-3.0+)
- 3) Свободно распространяемое программное обеспечение для функционального моделирования цифровых устройств фирмы Mentor Graphics ModelSim® 6.5a.
- 4) Свободно распространяемое программное обеспечение для проектирования и конфигурирования цифровых устройств на ПЛИС фирмы Altera Corporation Quartus II 10.0.
- 5) Свободно распространяемое программное обеспечение для проектирования и конфигурирования цифровых устройств на основе микроконтроллеров STM32 SWB4STM32

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для освоения дисциплины необходимы:

- 1) для проведения лекционных занятий необходима аудитория с достаточным количеством посадочных мест, соответствующая необходимым противопожарным нормам и санитарногигиеническим требованиям;
- 2) для проведения лабораторных работ необходим компьютерный класс с предустановленным программным обеспечением:
 - Операционная система Windows XP;
 - Свободно распространяемый офисный пакеты LibreOffice, SWB4STM32, Mentor Graphics
 ModelSim, Quartus II 10.0.
 - 3) образцы отчетов по лабораторным работам:
- 4) для проведения лекций и практических занятий аудитория должна быть оснащена проекционным оборудованием.

Программу составили к.т.н., доц. кафедры ЭП

Серебряков А. Е.