МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Радиотехнических устройств»

«СОГЛАСОВАНО»	«УТВЕРЖДАЮ»
Декан факультета ФРТ	Проректор РОПиМД
/ И.С. Холопов	/ А.В. Корячко
«» 20 г	«» 20 г
Заведующий кафедрой РТС	
/ В.И.Кошелев	
« » 20 г	

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.О.22 «МИКРОСХЕМОТЕХНИКА»

Направление подготовки 11.03.01 «Радиотехника»

Направленность (профиль) подготовки Радиотехнические системы локации, навигации и телевидения

> Уровень подготовки Бакалавриат

Квалификация выпускника – бакалавр

Формы обучения – заочная

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требований федерального государственного образовательного стандарта высшего образования по направлению подготовки 11.03.01 Радиотехника, утвержденного приказом Минобрнауки № 931 от 19.09.2017 г.

Разработчик Старший преподаватель каф. РТУ	В.А.Степашкин
Программа рассмотрена и одобрена на заседании кафедры РТУ «» (протокол №).	2020 г.
Заведующий кафедрой РТУ	Ю.Н.Паршин

1. Цель и задачи освоения дисциплины

Цель освоения дисциплины: изучение студентами принципов построения интегральных схем, схемотехнических решений (электрических и структурных схем), используемых в интегральных микросхемах и радиоэлектронной аппаратуре на их основе, а также применения интегральных микросхем в различных микроэлектронных аналоговых устройствах. При изучении этой дисциплины закладываются основы знаний, позволяющих умело использовать современную элементную базу радиоэлектроники и понимать тенденции и перспективы ее развития и практического использования; приобретаются навыки расчета и экспериментального исследования различных функциональных каскадов на основе аналоговых интегральных микросхем.

Задачи модуля 1: изучить материалы электронной техники и их электрофизические свойства: основные понятия и определения, историю и перспективы электроники, основные положения теории электропроводности твердых тел, кристаллическую структуру чистого полупроводника, примесные полупроводники.

Задачи модуля 1: изучить основные свойства компонентов интегральных микросхем и основные принципы архитектурного построения современных линейных интегральных микросхем.

Задачи модуля 2: изучить основную (классическую) схему дифференциального каскада, дифференциальный каскад с активной (динамической) нагрузкой, шумовые свойства и параметры дифференциального каскада и методы подачи сигнала на дифференциальный каскад.

Задачи модуля 3: изучить основные схемы базовых и вспомогательных каскадов аналоговых интегральных схем: входные и выходные каскады, источники тока (генераторы стабильного тока), источники напряжения и схемы сдвига (трансляторы) уровня.

Задачи модуля 4: изучить схемотехнику операционных усилителей, их общие характеристики, основные свойства и параметры, а также работу операционного усилителя с обратной связью.

Задачи модуля 5: изучить схемотехнику аналоговых устройств на основе операционных усилителей и методы их расчета (линейные и нелинейные схемы на базе операционных усилителей, активные фильтры).

Задачи модуля 6: изучить основную элементную базу электроники СВЧ, интегральные СВЧ транзисторы, монолитные интегральные микросхемы.

Задачи модуля 7: изучить основные проблемы повышения степени интеграции, основы функциональной электроники, основные принципы микросистемной техники и наноэлектроники.

2. Место дисциплины в структуре ОПОП

Дисциплина «Микросхемотехника» относится к обязательной части блока №1 дисциплин основных профессиональных образовательных программ (ОПОП) «Радиотехнические системы локации, навигации и телевидения» по направлению подготовки академического бакалавриата 11.03.01 «Радиотехника».

Студенты, обучающиеся по данному курсу, должны предварительно изучить дисциплины «Физика», «Теория электрических цепей», входящие в обязательную часть вышеуказанных ОПОП, а также изучить дисциплину «Электроника», входящую в часть, формируемую участниками образовательных отношений вышеуказанных ОПОП.

Дисциплина «Микросхемотехника» является основой для дальнейшего изучения дисциплин профессионального цикла и подготовки выпускной работы.

3. Компетенции обучающегося, формируемые в результате освоения дисциплины

Процесс изучения дисциплины направлен на формирование следующих компетенций в

соответствии с ФГОС ВО, ПООП (при наличии) по данному направлению подготовки, а также компетенций (при наличии), установленных университетом.

Профессиональные компетенции выпускников и индикаторы их достижения

Код	Формулировка компетенции	Индикаторы достижения		
ОПК-1	Способен использовать	ОПК-1.1. Знает фундаментальные законы природы и ос-		
	положения, законы и	новные физические и математические законы		
	методы естественных	ОПК-1.2. Умеет применять физические законы и мате-		
	наук и математики для	матические методы для решения задач теоретического и		
	решения задач	прикладного характера		
	инженерной	ОПК-1.3.Владеет навыками использования знаний		
	деятельности	физики и математики при решении практических задач		

4. Структура и содержание дисциплины

4.1 Объем дисциплины по семестрам (курсам) и видам занятий в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 4 зачетные единицы (144 часа).

Вид учебной работы	Всего	Семестры
	часов	5
Аудиторные занятия (всего)	32	32
В том числе:		
Лекции	16	16
Лабораторные работы (ЛР)	16	16
Практические занятия (ПЗ)		
Семинары (С)		
Курсовой проект/(работа) (аудиторная нагрузка)		
Другие виды аудиторной работы		
Самостоятельная работа (всего)	103	103
В том числе:		
Курсовой проект (работа) (самостоятельная рабо-		
та)		
Расчетно-графические работы		
Расчетные задания		
Реферат	24	24
Другие виды самостоятельной работы	79	79
Контроль	9	9
Вид промежуточной аттестации (Зачет, дифферен-		зачет
цированный Зачет, Зачет)		
Общая трудоемкость час	144	144
Зачетные Единицы Трудоемкости	4	4
Контактная работа (по учебным занятиям)	32	32

4.2. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

№ п/п	Тема	Общая трудоем кость,	оем обучающихся				Самост оятельн ая
		всего часов	всего	лекции	лаборат орные работы	практич еские занятия	работа обучаю щихся
1	2	3	4	5	6	7	8
	Всего	144	32	16	16		103
	Модуль 1 Введение. Основные схемотехнические направления построения аналоговых интегральных схем	8	2	2			6
1.1	Основные понятия и определения	4	1	1			3
1.2	Основные свойства компонентов интегральных микросхем. Основные принципы архитектурного построения современных линейных интегральных микросхем	4	1	1			3
	Модуль 2 Дифференциальный каскад (ДК) как основная схема каскада для интегральной схемы	17	3	3			14
2.1	Основная (классическая) схема дифференциального каскада	5	1	1			4
2.2	Дифференциальный каскад с активной (динамической) нагрузкой	5	1	1			4
2.3	Шумовые свойства и параметры дифференциального каскада	3.5	0.5	0.5			3
2.4	Методы подачи сигнала на диф- ференциальный каскад	3.5	0.5	0.5			3
	Модуль 3 Основные схемы базовых и вспо- могательных каскадов аналого- вых интегральных схем	22	7	7			15
3.1	Выходные каскады интегральных схем	4	1	1			3
3.2	Источники тока (генераторы стабильного тока (ГСТ))	5	2	2			3
3.3	Источники напряжения	4	1	1			3
3.4	Схемы сдвига уровня	4	1	1			3
3.5	Входные каскады интегральных схем	5	2	2			3
	Модуль 4 Схемотехника операционных усилителей	11	1	1			10
4.1	Общие характеристики операционных усилителей	2.25	0.25	0.25			2
4.2	Основные свойства	2.25	0.25	0.25			2

	операционных усилителей					
4.3	Основные параметры	2.25	0.25	0.25		2
	операционных усилителей					
4.4	Работа операционного усилителя	4.25	0.25	0.25		4
	с обратной связью					
	Модуль 5	37	17	1	16	20
	Аналоговые устройства на осно-					
	ве операционных усилителей					
5.1	Линейные и нелинейные схемы	18.5	8.5	0.5	8	10
	на базе операционных					
	усилителей и методы их расчета					
5.2	Активные фильтры на базе	18.5	8.5	0.5	8	10
	операционных усилителей					
	Модуль 6	16	2	2		14
	Микросхемы СВЧ диапазона					
6.1	Общие положения	2.5	0.5	0.5		2
6.2	Элементная база электроники	4.5	0.5	0.5		4
	СВЧ					
6.3	Интегральные СВЧ транзисторы	4.5	0.5	0.5		4
6.4	Монолитные интегральные	4.5	0.5	0.5		4
	микросхемы					
	Модуль 7	24				24
	Проблемы повышения степени					
	интеграции. Основы					
	функциональной электроники.					
	Микросистемная техника и					
	наноэлектроника					
7.1	Проблемы повышения степени	8				8
	интеграции					
7.2	Основы функциональной	8				8
	электроники					
7.3	Микросистемная техника и	8				8
	наноэлектроника					
	Контроль (зачет)	9				
	Всего	144	32	<i>16</i>	16	103

4.3 Содержание дисциплины 4.3.1 Лекционные занятия

№ π/π	№ разд.	Темы лекционных занятий	Трудоем- кость (час.)	Формируемые компетенции	Форма контроля
	1	Модуль 1 Введение. Основные схемотехни- ческие направления построения	2	ОПК-1	Зачет
		аналоговых интегральных схем			
1	1.1	Основные понятия и определения	1	ОПК-1	Зачет
	1.2	Основные свойства компонентов интегральных микросхем. Основные принципы архитектурного построения современных линейных интегральных микросхем	1	ОПК-1	Зачет

	2	Модуль 2	3	ОПК-1	Зачет
		Дифференциальный каскад (ДК)	J		Suiter
		как основная схема каскада для			
		интегральной схемы			
2	2.1	Основная (классическая) схема	1	ОПК-1	Зачет
		дифференциального каскада			
	2.2	Дифференциальный каскад с ак-	1	ОПК-1	Зачет
		тивной (динамической) нагрузкой			
3	2.3	Шумовые свойства и параметры	0.5	ОПК-1	Зачет
		дифференциального каскада			
	2.4	Методы подачи сигнала на диффе-	0.5	ОПК-1	Зачет
		ренциальный каскад			
	3	Модуль 3	7	ОПК-1	Зачет
		Основные схемы базовых и вспо-			
		могательных каскадов аналоговых			
		интегральных схем			
3	3.1	Выходные каскады интегральных	1	ОПК-1	Зачет
	2.2	схем		OFFIC 4	, n
4	3.2	Входные каскады интегральных	2	ОПК-1	Зачет
	2.2	cxeM	2	OHIC 1	n
6	3.3	Источники тока (генераторы ста-	2	ОПК-1	Зачет
7	2.4	бильного тока (ГСТ))	1	OHIC 1	7
/	3.4	Источники напряжения	1	ОПК-1	Зачет
	3.5	Схемы сдвига уровня	1	ОПК-1	Зачет
	4	Модуль 4	1	ОПК-1	Зачет
		Схемотехника операционных уси-	1	OHK-I	Зачет
7	4.1	Общие характеристики	0.25	ОПК-1	Зачет
,	7.1	операционных усилителей	0.23	OHK 1	Saici
8	4.2	Основные свойства операционных	0.25	ОПК-1	Зачет
		усилителей	0.25		54.161
	4.3	Основные параметры	0.25	ОПК-1	Зачет
		операционных усилителей			
9	4.4	Работа операционного усилителя с	0.25	ОПК-1	Зачет
		обратной связью			
	5	Модуль 5			
		Аналоговые устройства на основе	1	ОПК-1	Зачет
		операционных усилителей			
11	5.1	Линейные и нелинейные схемы на	0.5	ОПК-1	Зачет
		базе операционных усилителей и			
		методы их расчета		_	
	5.2	Активные фильтры на базе	0.5	ОПК-1	Зачет
	_	операционных усилителей			
	6	Модуль 6	2	ОПК-1	Зачет
10	<i>c</i> 1	Микросхемы СВЧ диапазона	0.5		
13	6.1	Общие положения	0.5	ОПК-1	Зачет
14	6.2	Элементная база электроники СВЧ	0.5	ОПК-1	Зачет
	6.3	Интегральные СВЧ транзисторы	0.5	ОПК-1	Зачет
	6.4	Монолитные интегральные	0.5	ОПК-1	Зачет
		микросхемы			

№ п/п	№ разд.	Темы лабораторных работ	Трудоем- кость (час.)	Формируемые компетенции	Форма контроля
1	5.1	Исследование неинвертирующих усилителей на операционном усилителе	4	ОПК-1	Зачет
2	5.1	Исследование инвертирующих усилителей на операционном усилителе	4	ОПК-1	Зачет
3	5.2	Исследование активных фильтров нижних и верхних частот на операционном усилителе	4	ОПК-1	Зачет
4	5.2	Исследование полосового и режекторного активных фильтров на операционном усилителе	4	ОПК-1	Зачет

4.3.3 Самостоятельная работа

№ разд.	Темы лекционных занятий	Трудоем- кость (час.)	Формируемые компетенции	Форма контроля
1	Модуль 1	6	ОПК-1	Зачет
	Введение. Основные схемотехниче- ские направления построения анало- говых интегральных схем			
1.1	Основные понятия и определения	3	ОПК-1	Зачет
1.2	Основные свойства компонентов интегральных микросхем. Основные принципы архитектурного построения современных линейных интегральных микросхем	3	ОПК-1	Зачет
2	Модуль 2 Дифференциальный каскад (ДК) как основная схема каскада для инте- гральной схемы	14	ОПК-1	Зачет
2.1	Основная (классическая) схема дифференциального каскада	4	ОПК-1	Зачет
2.2	Дифференциальный каскад с активной (динамической) нагрузкой	4	ОПК-1	Зачет
2.3	Шумовые свойства и параметры дифференциального каскада	3	ОПК-1	Зачет
2.4	Методы подачи сигнала на дифференциальный каскад	3	ОПК-1	Зачет
3	Модуль 3 Основные схемы базовых и вспомо- гательных каскадов аналоговых ин- тегральных схем	15	ОПК-1	Зачет
3.1	Выходные каскады интегральных схем	3	ОПК-1	Зачет
3.2	Источники тока (генераторы стабильного тока (ГСТ))	3	ОПК-1	Зачет

3.3	Источники напряжения	3	ОПК-1	Зачет
3.4	Схемы сдвига уровня	3	ОПК-1	Зачет
3.5	Входные каскады интегральных схем	3	ОПК-1	Зачет
4	Модуль 4	10	ОПК-1	Зачет
	Схемотехника операционных усили-			
4.1	Общие характеристики операционных усилителей	2	ОПК-1	Зачет
4.2	Основные свойства операционных усилителей	2	ОПК-1	Зачет
4.3	Основные параметры операционных усилителей	2	ОПК-1	Зачет
4.4	Работа операционного усилителя с обратной связью	4	ОПК-1	Зачет
5	Модуль 5 Аналоговые устройства на основе операционных усилителей	20	ОПК-1	Зачет
5.1	Линейные и нелинейные схемы на базе операционных усилителей и методы их расчета	10	ОПК-1	Зачет
5.2	Активные фильтры на базе операционных усилителей	10	ОПК-1	Зачет
6	Модуль 6 <i>Микросхемы СВЧ диапазона</i>	14	ОПК-1	Зачет
6.1	Общие положения	2	ОПК-1	Зачет
6.2	Элементная база электроники СВЧ	4	ОПК-1	Зачет
6.3	Интегральные СВЧ транзисторы	4	ОПК-1	Зачет
6.4	Монолитные интегральные микросхемы	4	ОПК-1	Зачет
7	Модуль 7 Проблемы повышения степени интеграции. Основы функциональной электроники. Микросистемная техника и наноэлектроника	24	ОПК-1	Зачет
7.1	Проблемы повышения степени интеграции	8	ОПК-1	Зачет
7.2	Основы функциональной электроники	8	ОПК-1	Зачет
	Микросистемная техника и наноэлектроника	8	ОПК-1	Зачет

5. Оценочные материалы для проведения промежуточной аттестации обучающихся по дисциплине

Оценочные материалы для проведения промежуточной аттестации обучающихся по дисциплине приведены в Приложении к рабочей программе дисциплины.

6. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

6.1. Основная учебная литература:

- 1. Легостаев Н.С. Микросхемотехника. Аналоговая микросхемотехника [Электронный ресурс]: учебное пособие / Н.С. Легостаев, К.В. Четвергов. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, 2014. 238 с. 978-5-86889-677-4. Режим доступа: http://www.iprbookshop.ru/72130.html
- 2. Чижма С.Н. Электроника и микросхемотехника [Электронный ресурс] : учебное пособие / С.Н. Чижма. Электрон. текстовые данные. М. : Учебно-методический центр по образованию на железнодорожном транспорте, 2012. 359 с. 978-5-89035-649-9. Режим доступа: http://www.iprbookshop.ru/16275.html
- 3. Троян П.Е. Микроэлектроника [Электронный ресурс] : учебное пособие / П.Е. Троян. Электрон. текстовые данные. Томск: Томский государственный университет систем управления и радиоэлектроники, 2007. 346 с. 2227-8397. Режим доступа: http://www.iprbookshop.ru/13947.html
- 4. Полевский В.И. Операционные усилители [Электронный ресурс] : учебное пособие / В.И. Полевский, Е.Г. Касаткина. Электрон. текстовые данные. Новосибирск: Новосибирский государственный технический университет, 2013. 27 с. 978-5-7782-2310-3. Режим доступа: http://www.iprbookshop.ru/45124.html
- 5. Линейные усилители и активные фильтры : метод. указ к лаб. работам / Степашкин Владимир Анатольевич, Озеран Светлана Петровна ; РГРТУ. Рязань, 2014. 64с.

6.2. Дополнительная учебная литература:

- 1. Микросхемотехника: Учеб.пособие для вузов / Алексенко Андрей Геннадьевич, Шагурин Игорь Иванович. 2-е изд.,перераб.и доп. М.:Радио и связь, 1990. 496с.
- 2. Ульрих Титце Полупроводниковая схемотехника. Том І [Электронный ресурс] / Титце Ульрих, Шенк Кристоф. Электрон. текстовые данные. Саратов: Профобразование, 2017. 826 с. 978-5-4488-0052-8. Режим доступа: http://www.iprbookshop.ru/63579.html
- 3. Ульрих Титце Полупроводниковая схемотехника. Том II [Электронный ресурс] / Титце Ульрих, Шенк Кристоф. Электрон. текстовые данные. Саратов: Профобразование, 2017. 940 с. 978-5-4488-0059-7. Режим доступа: http://www.iprbookshop.ru/63580.html
- 4. Основы микроэлектроники: Учеб.пособие для вузов / Аваев Николай Александрович, Наумов Юрий Евгеньевич, Фролкин Виктор Тихонович. М.:Радио и связь, 1991. 288с.
- 5. Основы микроэлектроники : Учеб.пособие для вузов / Степаненко Игорь Павлович ; Техн.ун-т. 2-е изд. М.:Лаборатория Базовых Знаний, 2003. 488с.
- 6. Микросхемотехника и наноэлектроника : учеб. пособие / Игнатов Александр Николаевич. СПб. : Лань, 2011. 528с.
- 7. Электроника : Учеб. / Щука Александр Александрович ; Под ред.Сигова А.С. СПб.:БХВ-Петербург, 2006. 800с.

6.3. Методические указания к лабораторным работам

1. Линейные усилители и активные фильтры : метод. указ к лаб. работам / Степашкин Владимир Анатольевич, Озеран Светлана Петровна ; РГРТУ. - Рязань, 2014. - 64с.

7. Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. Электронно-библиотечная система «IPRbooks» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный, доступ из сети Интернет по паролю. URL: https://iprbookshop.ru/.
- 2. Электронно-библиотечная система издательства «Лань» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный, доступ из сети Интернет по паролю. URL: https://www.e.lanbook.com.
- 3. Электронная библиотека РГРТУ [Электронный ресурс]. Режим доступа: из корпоративной сети РГРТУ по паролю. URL: http://elib.rsreu.ru/

8. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости)

- 1. Операционная система Windows XP (Microsoft MSDN AA, номер подписки 700102019, бессрочно);
- 2. LibreOffice (свободное ПО, Mozilla Public License 2.0, GNU Lesser General Public License 2.1, GNU Lesser General Public License 3.0, GNU General Public License 3.0);
 - 3. SumatraPDF (свободное ПО, GNU GPLv3);
- 4. Kaspersky Endpoint Security Коммерческая лицензия на 1000 компьютеров №2304-180222-115814-600-1595).

9. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

- 1. Аудитория 413к2. Учебная аудитория для проведения занятий лекционного и семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. 60 мест, 1 мультимедиа проектор, 1 экран, компьютер, специализированная мебель, маркерная доска.
- 2. Аудитория 415к2. Учебная аудитория для проведения занятий лекционного и семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации. 50 мест, 1 мультимедиа проектор, 1 экран, компьютер, специализированная мебель, маркерная доска.
- 3. Аудитории 412к2. Лаборатория электроники и микросхемотехники для проведения занятий по профильным дисциплинам, групповых и индивидуальных консультаций, а также для самостоятельной работы студентов. Оборудование: учебнолабораторные стенды по электронике со сменными панелями, генераторы сигналов, милливольметры двухканальные, мультиметры, частотомеры, вольтметры универсальные.
- 4. Аудитория 410к2. Помещение для хранения и профилактического обслуживания учебного оборудования. Шкафы, стеллажи для хранения учебного оборудования, контрольно-измерительная техника и инструменты для профилактического обслуживания учебного оборудования.

Программу составил Старший преподаватель кафедры РТУ

В.А.Степашкин