МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Электронные приборы»

«СОГЛАСОВАНО»

Директор института магистратуры и аспирантуры

Заведующий кафедрой ЭП
/ М.В. Чиркин
« 09» 06 2020 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.06 «Актуальные проблемы современной электроники»

Направление подготовки 11.04.04 «Электроника и наноэлектроника»

Направленность (профиль) подготовки Электронные приборы и устройства

> Уровень подготовки Магистратура

Квалификация выпускника – магистр

Форма обучения – очная

ЛИСТ СОГЛАСОВАНИЙ

д.ф. - м.н., профессор

Рабочая программа составлена с учетом требований федерального государственного образовательного стандарта высшего образования по направлению подготовки (специальности) 11.04.04 «Электроника и наноэлектроника»,

утвержденного 22.09.2017 №959

Разработчики
д.ф.—м.н., профессор кафедры «Электронные приборы»

Б.А. Козлов

Программа рассмотрена и одобрена на заседании кафедры

«_09_ » __06__ 2020 г., протокол № __6__

Заведующий кафедрой «Электронные приборы»

М.В. Чиркин

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы бакалавриата

Рабочая программа по дисциплине «Актуальные проблемы современной электроники» (Б1.В.06) является составной частью основной профессиональной образовательной программы (ОПОП) академической магистратуры, разработанной в соответствии с Федеральным государственным образовательным стандартом высшего образования по направлению подготовки 11.04.04 «Электроника и наноэлектроника» (уровень магистратуры), утвержденным приказом Минобрнауки России от 30.10.2014 № 1407.

Цель освоения дисциплины - изучение передовых достижений, основных направлений, тенденций, перспектив и проблем развития современной электроники и наноэлектроники, а также смежных областей науки и техники.

Задачи дисциплины - выработка навыков оценки новизны исследований и разработок, освоение новых методологических подходов к решению профессиональных задач в области электроники и наноэлектроники.

Перечень планируемых результатов обучения по дисциплине

Категория (группа) об-	Код и наименование общепро-	Код и наименование индикатора		
щепрофессиональных	фессиональной компетенции	достижения общепрофессиональной		
компетенций	-	компетенции		
	ПК-1. Готов формулировать	Знать: основные тенденции и		
	цели и задачи научных иссле-	перспективы развития электроники		
	дований в соответствии с тен-	и наноэлектроники <u>Уметь:</u> формулировать задачи научных исследований в области		
	денциями и перспективами			
	развития электроники и нано-			
	электроники, а также смежных	электроники и наноэлектроники		
	областей науки и техники, спо-	Владеть: навыками обоснованного		
	собностью обоснованно выби-	выбора теоретических и		
	рать теоретические и экспери-	экспериментальных методов и		
	ментальные методы и средства	средств решения		
	решения сформулированных	сформулированных задач в области		
	задач	электроники и наноэлектроники		
	ПК-6. Способность анализиро-	Знать: основные приемы анализа		
	вать состояние научно-	состояния научно-технической		
	технической проблемы путем	проблемы		
	подбора, изучения и анализа	<u>Уметь:</u> анализировать состояние		
	литературных и патентных ис-	научно-технической проблемы в		
	точников	области электроники и		
		наноэлектроники		
		Владеть: навыком работы с литера-		
		турными и патентными источника-		
		МИ		
	ПК-7. Готовность определять	Знать: базовые принципы		
	цели, осуществлять постановку	построения электронных приборов,		
	задач проектирования элек-	схем и устройств в области		
	тронных приборов, схем и уст-	электроники и наноэлектроники		
	ройств различного функцио-	<u>Уметь:</u> формулировать задачи		
	нального назначения, подго-	проектирования электронных		
	тавливать технические задания	приборов, схем и устройств в		
	на выполнение проектных ра-	области электроники и		
	бот	наноэлектроники		

<u>Владеть:</u> навыками подготовки
элементов технического задания на
выполнение проектных работ

2. Место дисциплины в структуре ОПОП магистратуры

Дисциплина «Актуальные проблемы современной электроники» (Б1.В.06) относится к вариативной части блока 1 дисциплин ОПОП «Электронные приборы и устройства» по направлению подготовки 11.04.04 «Электроника и наноэлектроника» Φ ГБОУ ВО «РГРТУ».

Дисциплина изучается по очной форме обучения на 1 курсе во 2 семестре.

Пререквизиты дисциплины. Дисциплина «Актуальные проблемы современной электроники» (Б1.В.04) базируется на следующих дисциплинах учебного плана подготовки бакалавров по направлению 11.03.04 «Электроника и наноэлектроника», ОПОП «Электронные приборы и устройства»: «Основы проектирования электронной компонентной базы».

До начала изучения учебной дисциплины обучающиеся должны:

знать: основные законы движения заряженных частиц в электрических полях в вакууме, газах и твердых телах. Способы генерации оптического и электромагнитного излучений. Основные методы детектирования оптического излучения.

уметь: формулировать задачи, связанные конструированием электровакуумных и твердотельных электронных приборов.

владеть: дифференциальным и интегральным исчислениями в объеме программы бакалавриата

Взаимосвязь с другими дисциплинами. Требования к входным знаниям совпадают с требованиями к освоению перечисленных выше предшествующих дисциплин ОПОП подготовки магистрантов по направлению 11.04.04 «Электроника и наноэлектроника», ОПОП «Электронные приборы и устройства». Дисциплина «Актуальные проблемы современной электроники» содержательно и методологически взаимосвязана с указанными дисциплинами.

Постреквизиты дисциплины. Дисциплина «Актуальные проблемы современной электроники» является основой для дальнейшего изучения дисциплин: «Научно-исследовательская работа», «Преддипломная практика», «Выпускная квалификационная работа».

3. Объем дисциплины и виды учебной работы

Общая трудоемкость (объем) дисциплины составляет 4 зачетные единицы (ЗЕ), 144 часов.

Вид учебной работы	Всего часов		В
	Очная форма	Очно- заочная форма	Заочная форма
Общая трудоемкость дисциплины, в том числе:	144	-	-
Контактная работа обучающихся с	64	-	-
преподавателем (всего), в том числе:			
Лекции	32	-	-
Лабораторные работы	-	-	-
Практические занятия	32	-	-
Самостоятельная работа обучающихся (всего), в	80	-	-
том числе:			
Курсовой проект/ курсовая работа	-	-	-
Подготовка к экзамену, консультации	36	-	-

Консультации в семестре	8	-	-
Иные виды самостоятельной работы	36	-	-
Вид промежуточной аттестации обучающихся:	экзамен	-	-

4. Содержание дисциплины

4.1. Содержание дисциплины, структурированное по темам (разделам)

Тема 1. Введение. Предмет дисциплины и ее задачи.

Предмет дисциплины. Основные определения, задачи курса. Основные этапы развития рентгеновской и коммутаторной техники, лазерной физики, лазерных промышленных технологий, лазерных информационных технологий, лазерной локации, приборов с зарядовой связью. Связь изучаемой дисциплины с разделами физики и другими дисциплинами направления.

Тема 2. Основные закономерности генерации тормозного и характеристического рентгеновского излучения.

Условия получения рентгеновского излучения. Методы измерения длин волн рентгеновского излучения. Связь длины волны и интенсивности рентгеновского излучения с током и напряжением на трубке для тормозного и характеристического рентгеновского излучения. Основные единицы измерения рентгеновского излучения. Биологическое воздействие рентгеновского излучения на человеческий организм. Взаимодействие рентгеновкого излучения с газообразными и твердыми телами.

Детектирование рентгеновского излучения. Характеристики и параметры основных типов детекторов рентгеновского излучения. Проблемы, связанные с генерацией интенсивных потоков рентгеновского излучения с малым фокусом и регистрацией единичных квантов рентгеновского излучения.

Тема 3. Конструкции современных рентгеновских трубок.

Принципы построения рентгеновских трубок. Варианты острофокусных трубок. Способы вывода излучения из рентгеновских трубок. Материалы для изготовления окон. Области применения рентгеновского излучения. Основные проблемы в области создания рентгеновских трубок с необходимыми параметрами.

Тема 4. Сильноточные и быстродействующие коммутаторы тока.

Твердотельные и газоразрядные коммутаторы, применяемые в высоковольтной технике. Основные закономерности коммутации больших токов за малые временные интервалы. Газоразрядные сильноточные коммутаторы низкого и высокого давления. Их достоинства и недостатки. Искровые разрядники-обострители. Основные проблемы при разработке сильноточных и быстро-действующих коммутаторов.

Тема 5. Мощные лазеры для технологических и военных применений.

Способы достижения высоких уровней мощности лазерного излучения. Мощные лазеры ультрафиолетового, видимого, инфракрасного и дальнего инфракрасного излучений. Проблемы, связанные с реализацией высоких уровней лазерного излучения. Лучевая стойкость оптических элементов лазеров. Проблемы оптического материаловедения.

Тема 6. Применение лазеров в оптической локации и экологическом мониторинге окружающей среды.

Лазеры в телекоммуникационных технологиях. Лазерная гироскопия. Основные направления развития лазерной техники в современных условиях. Основные проблемы в области лазерной физики, лазерной техники и современных промышленных лазерных технологий.

Тема 7. Генерация мощных электромагнитных импульсов (ЭМИ).

Основные требования к параметрам ЭМИ. Условие формирование высоковольтных импульсов напряжений с субнаносекундными передними фронтами. Согласование импульсных генераторов с передающей антенной.

Тема 8. Фотоприёмные приборы с зарядовой связью.

Фотоприемники изображений на основе приборов с зарядовой связью: структура, принцип действия, методы считывания информации, формирование цветных изображений. Основные проблемы в области создания приборов с зарядовой связью.

Тема 9. Заключение.

Тенденции развития современной электроники и наноэлектроники. Основные технические, технологические и социальные последствия развития современной электроники.

4.2. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах).

№ п/п	Тема	Общая Контактная работа трудое обучающихся с мкость преподавателем всего			Самостоятельная работа обучающихся		
		часов	Всего	иекции	Практ	лабор	
1	Введение. Предмет дисциплины и ее задачи.	4	2	2	-	-	2
2	Основные закономерности генерации тормозного и характеристического рентгеновского излучения.	10	6	2	4	-	4
3	Конструкции современных рентгеновских трубок.	6	4	2	2	-	2
4	Сильноточные и быстродействующие коммутаторы тока.	18	12	6	6	-	6
5	Мощные лазеры для техно- логических и военных при- менений.	18	12	6	6	-	6
6	Применение лазеров в оптической локации и экологическом мониторинге окружающей среды.	12	8	4	4	-	4
7	Генерация мощных электромагнитных импульсов (ЭМИ)	16	10	4	6		6
8	Фотоприёмные приборы с зарядовой связью.	12	8	4	4	-	4
9	Заключение	4	2	2	-	-	2
10	Консультации в семестре	8	-	-		-	8
11	Экзамены и консультации	36	-	-		-	36
	Всего:	144	64	32	32	-	80

4.3 Виды практических, лабораторных и самостоятельных работ

№ п/п	Тема	Вид работы	Наименование и содержание работы	Трудо- емкость , часов
1	Введение. Предмет дисциплины и ее задачи.	Самостоятельная работа	Изучение конспекта лекций	2
2	Основные закономерности генерации	Самостоятельная работа	Детектирование рентгеновского излучения. Изучение конспекта лекций.	4
	тормозного и характеристического рентгеновского излучения	Практическая работа	Расчет спектральных характеристик тормозного излучения: зависимости от напряжения и от тока. Расчет спектральных характеристик характеристического рентгеновского излучения.	4
3	Конструкции современных рентгеновских трубок.	Самостоятельная работа Практическая	Области применения рентгеновского излучения. Изучение конспекта лекций. Расчет узлов острофокусной	2
		работа	рентгеновской трубки	
4	Сильноточные и быстродействующие коммутаторы тока.	Самостоятельная работа	Искровые разрядники- обострители. Изучение конспекта лекций.	6
		Практическая работа	Расчет амплитудных и временных характеристик тиратронов с накаленным и холодным катодами. Расчет амплитудных и временных характеристик искровых разрядников и разрядников-обострителей.	6
5	Мощные лазеры для технологических и военных применений.	Самостоятельная работа	Мощные лазеры ультрафиолетового и видимого излучений. Изучение конспекта лекций.	6
		Практическая работа	Расчет параметров оптического резонатора лазера, генерирующего среднюю мощность излучения в области 1-10 кВт. Расчет параметров источника накачки СО2 лазера со средней мощностью излучения до 20 кВт	6
6	Применение лазеров в оптической локации и экологическом	Самостоятельная работа	Лазеры в телекоммуникационных технологиях. Изучение конспекта лекций.	4

№ п/п	Тема	Вид работы	Наименование и содержание работы	Трудо- емкость , часов
	мониторинге	Практическая	Задание на определение	4
	окружающей среды.	работа	оптимальной оптической схемы	
			лидара для зондирования	
			вредных выбросов над	
			индустриальной зоной	
7	Генерация мощных	Самостоятельная	Типы передающих антенн.	6
	электромагнитных	работа	Изучение конспекта лекций.	
	импульсов (ЭМИ)	Практическая	Расчет конструкции импульсного	6
		работа	генератора на 350 кВ, для	
			генерации ЭМИ.	
			Оптимизация цепей обострения	
			тока возбуждения генератора	
			ЭМИ.	
			Определение параметров	
			диаграммы направленности	
			генерируемого ЭМИ.	
8	Фотоприёмные	Самостоятельная	Приборы с зарядовой связью.	4
	приборы с зарядовой	работа	Изучение конспекта лекций.	
	связью.	Практическая	Определение минимальной	4
		работа	экспозиции при регистрации	
			движущихся объектов в	
			зависимости от его	
			освещенности.	
			Расчет минимального времени	
			считывания при различных	
9	Заключение	Самостоятельная	методах развертки кадра. Изучение конспекта лекций.	2
	Suicilo lonno	работа	113y 1011110 ROHOHERTA HEREITH.	2
10	Консультации в	Самостоятельная	Изучение конспекта лекций.	8
	семестре	работа		
	•	обучающегося		

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- 1. Исследование основных характеристик источников излучения для волоконно— оптических линий связи. Методические указания к лабораторным работам «Волоконная оптика». Сост. Козлов Б.А. Рязань: РГРТУ, 2010, с.13–23. (№ 4291).
- 2. Исследование временных характеристик неохлаждаемых фотоприем-ников. Методические указания к лабораторным работам «Волоконная оптика». Сост. Козлов Б.А. Рязань: РГРТУ, 2010, с.24–38. (№ 4291).
- 3. Пространственные и временные характеристики светоизлучающих и лазерных диодов. Методические указания к лабораторной работе. Сост. Козлов Б.А. Рязань: РГРТУ, 2015, 12 с. (№ 4681).
- 4. Временные характеристики детекторов лазерного излучения. Методи-ческие указания к лабораторной работе. Сост. Козлов Б.А. Рязань: РГРТУ, 2015, 12 с. (№ 4856).

6. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств приведен в приложении к рабочей программе дисциплины (см. документ «Оценочные материалы по дисциплине «Актуальные проблемы современной электроники»).

7. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная учебная литература:

- 1. Филачев А.М., Таубкин И.И., Тришенков М.А. Твердотельная фотоэлектроника. М., Физматгиз, 2005.
- 2. Оптико—электронные системы экологического мониторинга природной среды. Под общей ред. В.Н. Рождествина. –М., Издат. МГТУ им. Н.Э.Баумана, 2002.
 - 3. Месяц Г.А., Импульсная энергетика и электроника. М., Наука, 2004.
- 4. Бараночников, М.Л. Приемники и детекторы излучений [Электронный ресурс] : справочник / М.Л. Бараночников. Электрон. дан. Москва : ДМК Пресс, 2012. 640 с. Режим доступа: https://e.lanbook.com/book/4145. Загл. с экрана.
- 5. Дьяконов В.П. Сверхскоростная твердотельная электроника. Том 2. Приборы специального назначения [Электронный ресурс] / В.П. Дьяконов. Электрон. текстовые данные. Саратов: Профобразование, 2017. 576 с. 978-5-4488-0121-1. Режим доступа: http://www.iprbookshop.ru/64062.html
- 6. Дьяконов В.П. Сверхскоростная твердотельная электроника. Том 1. Приборы общего назначения [Электронный ресурс] / В.П. Дьяконов. Электрон. текстовые данные. Саратов: Профобразование, 2017. 600 с. 978-5-4488-0139-6. Режим доступа: http://www.iprbookshop.ru/64061.html.
- 7. Семенов Б.Ю. Силовая электроника. Профессиональные решения [Электронный ресурс] / Б.Ю. Семенов. Электрон. текстовые данные. Саратов: Профобразование, 2017. 415 с. 978-5-4488-0057-3. Режим доступа: http://www.iprbookshop.ru/63586.html
- 8. Игумнов, Д.В. Основы полупроводниковой электроники [Электронный ресурс] : учебное пособие / Д.В. Игумнов, Г.П. Костюнина. Электрон. дан. Москва : Горячая линия-Телеком, 2011. 394 с. Режим доступа: https://e.lanbook.com/book/5157. Загл. с экрана.
- 9. Сажин, С.Г. Приборы контроля состава и качества технологических сред [Электронный ресурс] : учебное пособие / С.Г. Сажин. Электрон. дан. Санкт-Петербург : Лань, 2012. 432 с. Режим доступа: https://e.lanbook.com/book/3552. Загл. с экрана.
- 10. Базовые лекции по электронике. Том І. Твердотельная электроника. Под ред. В.М. Пролейко. –М., Техносфера, 2009.
- 11. Базовые лекции по электронике. Том II. Твердотельная электроника. Под ред. В.М. Пролейко. –М., Техносфера, 2009.

Дополнительная учебная литература:

- 1. Гуревич В.И. Защита оборудования подстанций от электромагнитного импульса [Электронный ресурс] / В.И. Гуревич. Электрон. текстовые данные. М. : Инфра-Инженерия, 2016. 302 с. 978-5-9729-0104-3. Режим доступа: http://www.iprbookshop.ru/40230.html
- 2. Блум, X. Схемотехника и применение мощных импульсных устройств [Электронный ресурс] / X. Блум. Электрон. дан. Москва : ДМК Пресс, 2010. 348 с. Режим доступа: https://e.lanbook.com/book/60997. Загл. с экрана.

3. Дмитренко, В.П. Экологический мониторинг техносферы [Электронный ресурс] : учебное пособие / В.П. Дмитренко, Е.В. Сотникова, А.В. Черняев. — Электрон. дан. — Санкт-Петербург : Лань, 2014. — 368 с. — Режим доступа: https://e.lanbook.com/book/4043. — Загл. с экрана.

8. Перечень ресурсов информационно-телекоммуникационной сети Интернет, необходимых для освоения дисциплины

Электронные образовательные ресурсы:

- 1. Электронно-библиотечная система «IPRBook». ЭБС издательства «IPRBook» [Электронный ресурс]. URL: http://iprbookshop.ru/
- 2. Электронно-библиотечная система «Лань». ЭБС издательства «Лань» [Электронный ресурс]. URL: http://e.lanbook.com

9. Методические указания для обучающихся по освоению дисциплины

Материал каждой лекции рекомендуется изучать в день ее прочтения лектором, когда она еще не забыта. При этом необходимо использовать конспект и рекомендованную литературу. Использовать литературу необходимо для углубленного изучения материала лекции и для уточнения тех мест, которые в конспекте оказались записаны недостаточно понятно. В конспекте каждой лекции необходимо оставлять чистое место и конспектировать в нем изученную литературу, чтобы при подготовке к текущей, промежуточной или итоговой аттестации можно было повторить всю тему. Лектором в течение всего семестра проводятся консультации по лекционному материалу.

Каждую тему, предусмотренную планом самостоятельной работы, следует изучать самостоятельно в течение отведенных для ее изучения двух недель с помощью рекомендованной литературы. Все возникающие при этом вопросы надо записывать, чтобы получить на них ответы на консультации. По каждой теме для каждой учебной группы лектор проводит консультации в конце ее изучения (один раз в две недели).

Практическая работа студента заключается в решении или выполнении типовых задач и заданий. Каждое решение должно быть оформлено в виде отчета и должно содержать следующие элементы:

- -титульный лист;
- -начальное данные;
- -решение задачи или результат выполненного задания.

В конце семестра при подготовке к аттестации студент должен повторить изученный в семестре материал и в ходе повторения обобщить его, сформировав цельное представление о нем. Следует иметь в виду, что на подготовку к промежуточной аттестации времени бывает очень мало, поэтому начинать эту подготовку надо заранее, не дожидаясь последней недели семестра.

Следует всегда помнить, что залог успеха студента в учебе – планомерная работа в течение всего семестра и своевременное выполнение всех видов работы.

Самостоятельная работа как вид учебной работы может использоваться на лекциях и практических занятиях, а также иметь самостоятельное значение — внеаудиторная самостоятельная работа обучающихся — при подготовке к лекциям, практическим занятиям, а также к теоретическому зачету.

Основными видами самостоятельной работы по дисциплине являются:

- самостоятельное изучение отдельных вопросов по темам самостоятельных работ (п.4.3);
- подготовка к защите практического задания, оформление отчета.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

В соответствии с требованиями ФГОС ВО по направлению подготовки магистрантов 11.04.04 «Электроника и наноэлектроника», при изучении студентами дисциплины реализация компетентностного подхода предусматривает широкое использование в учебном процессе активных и интерактивных технологий проведения занятий в сочетании с внеаудиторной работой преподавателя и студента.

Изучение дисциплины предусматривает применение активных форм проведения занятий с целью формирования и развития общекультурных, общепрофессиональных и профессиональных компетенций обучающихся.

При проведении самостоятельной работы обучающихся используются следующие информационные технологии:

- доступ в сеть Интернет, обеспечивающий, поиск актуальной научно-методической и научно-технической информации;
- необходимое программное обеспечение для выполнения программы дисциплины, установленное в вузе, а также для выполнения самостоятельной работы в домашних условиях;

При организации самостоятельной работы студентов используется комплекс учебных и учебно-методических материалов в сетевом доступе (программа, методические пособия, список рекомендуемых источников литературы и информационных ресурсов, задания в тестовой форме и вопросы для самоконтроля).

Принятая технология обучения базируется на интерактивной работе в аудитории, когда в процессе лекций, лабораторных и практических занятий, дополняемых самостоятельной работой обучаемых, в том числе и с участием преподавателя, выполняется серия экспресс-заданий, совокупность которых позволяет практически применить полученные знания, развивая компетенции, предусмотренные для данной дисциплины.

Проведение ряда занятий осуществляется с использованием компьютеров и мультимедийных средств, наглядных пособий.

Перечень лицензионного программного обеспечения:

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для освоения дисциплины необходимы:

- 1) для проведения лекционных занятий необходима аудитория с достаточным количеством посадочных мест, соответствующая необходимым противопожарным нормам и санитарногигиеническим требованиям;
- 2) для проведения практических занятий необходима аудитория с достаточным количеством посадочных мест, соответствующая необходимым противопожарным нормам и санитарно-гигиеническим требованиям.

Программу составили д.ф.-м.н., проф. кафедры ЭП

Козлов Б А