МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Микро- и наноэлектроника»

ВЕРЖДАЮ» куюр РОПиМД

/ А.В. Корячко

20 20 г

«СОГЛАСОВАНО»

ДДекан ФЭ

_/ Н.М. Верещаги

20 20 г

Заведующий кафедрой МНЭЛ

/ В.Г. Литвинов

06 20 20 г

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.В.03 «Физика наносистем»

Направление подготовки 11.03.04 «Электроника и наноэлектроника»

Направленность (профиль) подготовки Микро- и наноэлектроника

> Уровень подготовки Академический бакалавриат

Квалификация выпускника – бакалавр

Формы обучения - очная

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требований федерального государственного образовательного стандарта высшего образования по направлению подготовки (специальности) 11.03.04 «Электроника и наноэлектроника»,

утвержденного 19.09.2017 № 927

Разработчики Зав. кафедрой МНЭЛ д.ф.-м.н., доцент

Buff

В.Г. Литвинов

Программа рассмотрена и одобрена на заседании кафедры МНЭЛ

«<u>19</u>» <u>06</u> 2020 г., протокол № 9

Заведующий кафедрой МНЭЛ

д.ф.-м.н., доцент

Bruk

В.Г. Литвинов

1. ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины является приобретение базовых знаний и умений в области физики наносистем в соответствии с Федеральным государственным образовательным стандартом и формирование у студентов способности к логическому мышлению, анализу и восприятию информации посредством обеспечения этапов формирования компетенций, предусмотренных ФГОС, в части представленных ниже знаний, умений и навыков.

Задачи:

- обучение базовым физическим принципам построения и функционирования наносистем,
- обучение разработке, созданию и применению специальных материалов, устройств и систем, используемых в наноэлектронике и нанотехнологиях.
- развитие умений применения на практике методологии научных исследований, организации и проведения научно-исследовательской работы;
 - развитие навыка самостоятельной учебной деятельности.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Физика наносистем (Б1.В.03)» относится к вариативной части Блока 1 «Дисциплины (модули)» основных профессиональных образовательных программ (далее – образовательных программ) бакалавриата «Микро- и наноэлектроника» направления 11.03.04 «Электроника и наноэлектроника».

Дисциплина базируется на следующих дисциплинах: «Физика Б1.О.10», «Статистическая физика электронных процессов Б1.О.16», «Физические основы электроники Б1.О.21», «Физические основы микро- и наноэлектроники Б1.О.25».

До начала изучения учебной дисциплины обучающиеся должны:

знать: основные факты, базовые концепции и модели физики, квантовой физики, статистической физики, основные характеристики материалов, их применение в элементах электронной техники, основные виды элементов электронной техники, их параметры и характеристики;

уметь: применять на практике основные приемы и программные средства обработки и представления данных, применение которых возможно при изучении и моделировании наносистем;

владеть: начальными навыками экспериментального исследования параметров и характеристик наносистем.

Результаты обучения, полученные при освоении дисциплины, необходимы при изучении следующих дисциплин: Б1.В.ДВ.02.01 «Оптоэлектроника и квантовая оптика» и при выполнении выпускной квалификационной работы.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Процесс изучения дисциплины направлен на формирование следующих компетенций в соответствии с ФГОС ВО, ПООП (при наличии) по данному направлению подготовки, а также компетенций (при наличии), установленных университетом.

Профессиональные компетенции выпускников и индикаторы их достижения

Категория (группа) обще- профес- сиональных компетенций	Код и наименование общепрофес- сиональной компетенции	Код и наименование индикатора достижения общепрофессиональной компетенции
устройств, при- боров и систем аналоговой электронной техники	ПК-2 Способен аргументировано выбирать и реализовывать на практике эффективную методику экспериментального исследования параметров и характеристик приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения	Уметь: проводить исследования характеристик электронных приборов. ПК-2.3 _{ПК-2} Владеть: навыками проведения исследований параметров и характеристик элементов и структур наноэлектроники
Проектирование устройств, при- боров и систем аналоговой электронной техники	ПК-3 Способен выполнять расчет и про- ектирование электронных приборов, схем и устройств различного функ- ционального назначения в соответ- ствии с техническим заданием с ис- пользованием средств автоматиза- ции проектирования	ПК-3.1 _{ПК-3} Знать: принципы конструирования отдельных аналоговых блоков электронных приборов. ПК-3.2 _{ПК-3} Уметь: проводить оценочные расчеты характеристик электронных приборов. ПК-3.3 _{ПК-3} Владеть: навыками подготовки принципиальных и монтажных электрических схем.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1 Объем дисциплины по семестрам (курсам) и видам занятий в зачетных единицах с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся

Общая трудоемкость изучения дисциплины составляет 7 ЗЕ (252 часа).

Дисциплина реализуется в рамках части, формируемой участниками образовательных отношений, Блока 1 учебного плана ОПОП. Дисциплина изучается на 4 курсе в 7 и 8 семестре.

Ριντινικού να δοστι	Распо насер	Семестр		
Вид учебной работы	Всего часов	7	8	
Аудиторные занятия (всего)	106,9	66,35	40,55	
В том числе:				

Лекции	64	48	16
Лабораторные занятия (ЛЗ)	32	16	16
Практические занятия (ПЗ)	8	1	8
Иная контактная работа (ИКР)	0,9	0,35	0,55
Консультации	2	2	-
Самостоятельная работа (СР) (всего)	76	69	7
Курсовое проектирование (КП)	15,7	1	15,7
Контроль	53,4	44,65	8,75
Вид промежуточной аттестации (зачет, дифференцированный зачет, экзамен)		зачет	экзамен
Общая трудоемкость час	252	180	72
Зачетные Единицы Трудоемкости	7	5	2
Контактная работа (по учебным занятиям)	106,9	66,35	40,55

4.2 Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

No	Раздел дисци-	Общая	Конт	актная	а рабо	та об	бучаюц	цихся			
	плины	трудоем		с пр	епод	авате	елем				
		ем-	всего	Лек	ПЗ	ЛЗ	Кон-	ИКР	КП	СР	Кон-
		кость,		ции			суль-		IXII		троль
		всего					тации				
		часов									
	Всего	252	106,9	64	8	32	2	0,9	15,7	76	53,4
		1		7 семе	стр	T	,		T	ı	
	Всего	180	66,35	48	-	16	2	0,35	-	69	44,65
1	Введение	2	2	2						-	
2	Атомы, молекулы и наносистемы	24	12	8		4				12	
3	Атомные кластеры, нанотрубки, нанопроволоки, квантовые точки, системы с пониженной размерностью газа носителей заряда	30	16	12		4				14	
4	Углеродные нано- структуры	20	8	8						12	
5	Фотонные, оптические кристаллы	24	12	8		4				12	
	Наносистемы и квантовая оптика	26	14	10		4				12	
	ИКР	0,35	0,35					0,35			
	Зачет и консультации	53,65	2				2			7	44,65
	ı ·	1		8 семес	стр	I.	1		l .	I.	1
	Всего	72	40,55	16	8	16	_	0,55	15,7	7	8,75

1	Бионаносистемы	8	6	4	2				2	
2	Спинтронные	8	6	4	2				2	
	наносистемы									
3	Методы теоретиче-	31	28	8	4	16			3	
	ского и экспери-									
	ментального ис-									
	следования нано-									
	систем									
	ИКР	0,55	0,55				0,55			
	КП	15,7						15,7		
	Экзамен и кон-	8,75								8,75
	сультации									

4.3 Содержание дисциплины

4.3.1 Лекционные занятия

№	Темы лекционных занятий	Трудоемкость	Формируемые	Форма
п/п	темы лекционных занятии	(час.)	компетенции	контроля
		7 семестр		
1	Введение	2	ПК-2, ПК-3	экзамен
2	Атомы, молекулы и наносистемы	8	ПК-2, ПК-3	экзамен
3	Атомные кластеры, нанотрубки,	12	ПК-2, ПК-3	экзамен
	нанопроволоки, квантовые точки,			
	системы с пониженной размерно-			
	стью газа носителей заряда			
4	Углеродные наноструктуры	8	ПК-2, ПК-3	экзамен
5	Фотонные, оптические кристал-	8	ПК-2, ПК-3	экзамен
	лы			
6	Наносистемы и квантовая оптика	10	ПК-2, ПК-3	экзамен
		8 семестр		
7	Бионаносистемы	4	ПК-2, ПК-3	зачет
8	Спинтронные наносистемы	4	ПК-2, ПК-3	зачет
9	Методы теоретического и экспе-	8	ПК-2, ПК-3	зачет
	риментального исследования			
	наносистем			

4.3.2 Лабораторные занятия

	7.5.2 Jiaooparopiibic saiihiinh			
№	Наименование ЛЗ	Трудоемкость	Формируемые	Форма
Π/Π	паименование ло	(час.)	компетенции	контроля
		7 семестр		
1	Оптические спектры атомов	4	ПК-2, ПК-3	Отчет по лабо-
				раторной рабо-
				те, экзамен
2	Изучение оптического поглоще-	4	ПК-2, ПК-3	Отчет по лабо-
	ния полупроводников			раторной рабо-
				те, экзамен
3	Изучение электрической прово-	4	ПК-2, ПК-3	Отчет по лабо-
	димости простых полупроводни-			раторной рабо-

	КОВ			те, экзамен
4	Изучение эффекта туннелирова-	4	ПК-2, ПК-3	Отчет по лабо-
	Р В В В В В В В В В В			раторной рабо-
				те, экзамен
		8семестр	T	1
5	Изучение эффекта размерного	2	ПК-2, ПК-3	Отчет по лабо-
	квантования энергии электронов			раторной рабо-
	и дырок в потенциальных ямах в			те, зачет
	полупроводниковых гетеро-			
	структурах	2	HICA HICA	0 7
6	Изучение влияния упругих	2	ПК-2, ПК-3	Отчет по лабо-
	напряжений на энергетическую зонную диаграмму полупровод-			раторной рабо-
	никовой гетероструктуры с кван-			10, 34401
	товой ямой			
7	Исследование диода Шоттки ме-	2	ПК-2, ПК-3	Отчет по лабо-
	тодом вольт-амперных характе-	_	7, 1110	раторной рабо-
	ристик			те, зачет
8	Исследование барьерной струк-	2	ПК-2, ПК-3	Отчет по лабо-
	туры металл-полупроводник ме-			раторной рабо-
	тодом вольт-фарадных характе-			те, зачет
	ристик			
9	Физические основы атомно-	2	ПК-2, ПК-3	Отчет по лабо-
	силовой микроскопии			раторной рабо-
	-			те, зачет
10	Физические основы сканирую-	2	ПК-2, ПК-3	Отчет по лабо-
	щей туннельной микроскопии			раторной рабо-
1.1	H	2	пи э пи э	те, зачет
11	Исследование нанообъектов ме-	2	ПК-2, ПК-3	Отчет по лабо-
	тодом растровой электронной			раторной рабо-
12	Микроскопии	2	ПК-2, ПК-3	Отчет по лабо-
12	Исследование наносистем мето- дом рентгеновского энергодис-	<u> </u>	1118-2, 1118-3	раторной рабо-
	персионного микроанализа			те, зачет
<u> </u>	перепошного микроапализа			10, 30-101

4.3.3 Практические занятия

$N_{\underline{0}}$	Наименование практических за-	Трудоемкость	Формируемые	Форма
ПП	нятий	(час)	компетенции	контроля
1	Атомы, молекулы и наносистемы	2	ПК-2, ПК-3	зачет
2	Атомные кластеры, нанотрубки,	2	ПК-2, ПК-3	зачет
	нанопроволоки, квантовые точ-			
	ки, системы с пониженной раз-			
	мерностью газа носителей заряда			
3	Наносистемы и квантовая оптика	2	ПК-2, ПК-3	зачет
4	Спинтронные наносистемы	2	ПК-2, ПК-3	зачет

4.3.4 Самостоятельная работа

	neri Sumocroni enbhun puooru				
$N_{\underline{0}}$	Тематика самостоятельной рабо-	Трудоемкость	Формируемые	Форма	
Π/Π	ТЫ	(час.)	компетенции	контроля	
		7 семестр			
1.	Атомы, молекулы и наносистемы	12	ПК-2, ПК-3	экзамен	
2.	Методы получения нанокластеров, квантовых точек, тонких пле-	14	ПК-2, ПК-3	экзамен	
	нок, квантовых проволок				
3.	Практическое применение углеродных наносистем	12	ПК-2, ПК-3	экзамен	
4.	Практическое применение фотонных наносистем	12	ПК-2, ПК-3	экзамен	
5.	Наносистемы и квантовая оптика	12	ПК-2, ПК-3	экзамен	
		8 семестр			
6.	Практическое применение бионаносистем	2	ПК-2, ПК-3	зачет	
7.	Практическое применение спинтронных наносистем	2	ПК-2, ПК-3	зачет	
8.	Методы теоретического и экспериментального исследования наносистем	3	ПК-2, ПК-3	зачет	

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Оценочные материалы приведены в приложении к рабочей программе дисциплины (см. документ «Оценочные материалы по дисциплине «Физика наносистем»).

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

6.1 Основная литература

- 1. Щука А.А. Наноэлектроника. М.: БИНОМ. 2012. 342 с. Режим доступа: https://e.lanbook.com/book/84102?category_pk=3827#book_name
- 2. Шишкин Г.Г., Агеев И.М. Наноэлектроника. Элементы, приборы, устройства. М.: БИНОМ. 2011. 408 с. Режим доступа: https://e.lanbook.com/book/66208?category_pk=3827#authors
- 3. Давыдов, С.Ю. Элементарное введение в теорию наносистем [Электронный ресурс]: учеб. пособие / С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник. Электрон. дан. Санкт-Петербург: Лань, 2014. 192 с. Режим доступа: https://e.lanbook.com/book/44757.
- 4. Данилин, А.А. Измерения в радиоэлектронике [Электронный ресурс]: учеб. пособие / А.А. Данилин, Н.С. Лавренко. Электрон. дан. Санкт-Петербург: Лань, 2017. 408 с. Режим доступа: https://e.lanbook.com/book/89927.
- 5. Игнатов, А.Н. Микросхемотехника и наноэлектроника [Электронный ресурс] : учеб. пособие Электрон. дан. Санкт-Петербург : Лань, 2011. 528 с. Режим доступа: https://e.lanbook.com/book/2035.

- 6. Смирнов, Ю.А. Основы нано- и функциональной электроники [Электронный ресурс]: учеб. пособие / Ю.А. Смирнов, С.В. Соколов, Е.В. Титов. Электрон. дан. Санкт-Петербург: Лань, 2013. 320 с. Режим доступа: https://e.lanbook.com/book/5855.
- 7. Игнатов, А.Н. Оптоэлектроника и нанофотоника [Электронный ресурс] : учеб. пособие Электрон. дан. Санкт-Петербург : Лань, 2011. 528 с. Режим доступа: https://e.lanbook.com/book/690.
- 8. Сергеев Н.А. Физика наносистем [Электронный ресурс]: монография / Н.А. Сергеев, Д.С. Рябушкин. Электрон. текстовые данные. М. : Логос, 2015. 192 с. 978-5-98704-833-7. Режим доступа: http://www.iprbookshop.ru/33418.html
- 9. Физика наносистем. Методические указания к лабораторным работам/ Сост.: В.Г. Литвинов, А.В. Ермачихин, Рязан. гос. радиотехн. университет.- Рязань, 2017.- 32 с.
- 10. Литвинов В.Г. Фундаментальные основы физики наносистем. Учебное пособие / Рязан. гос. радиотехн. ун-т. Рязань, 2017. 48 с.
- 11. Растровая электронная микроскопия для нанотехнологий. Методы и применения / под ред. У.Жу, Ж.Л. Уанга; пер. с англ. М.: БИНОМ. Лаборатория знаний, 2013. 582 с. Режим доступа: https://e.lanbook.com/book/94144#book_name
- 12. Рыбин Н.Б., Рыбина Н.В., Литвинов В.Г., Ермачихин А.В., Методы зондовой микроскопии. Уч. пособ., Рязань, РГРТУ, 2014.
- 13. Вихров С.П., Холомина Т.А. Нанотехнологии и биосистемы: научное издание. Рязан. гос. радиотехн. университет. Рязань, 2010. 236 с.
- 14. Погосов В.В. Введение в физику зарядовых и размерных эффектов. Поверхность, кластеры, низкоразмерные системы [Электронный ресурс]/ Погосов В.В.— Электрон. текстовые данные.— М.: ФИЗМАТЛИТ, 2006.— 328 с.— Режим доступа: http://www.iprbookshop.ru/17195.— ЭБС «IPRbooks»
- 15. Заводинский В.Г. Компьютерное моделирование наночастиц и наносистем [Электронный ресурс]/ Заводинский В.Г.— Электрон. текстовые данные.— М.: ФИЗМАТЛИТ, 2013.— 176 с.— Режим доступа: http://www.iprbookshop.ru/24421.— ЭБС «IPRbooks»
- 16. Карасев В.А. Введение в конструирование бионических наносистем [Электронный ресурс]/ Карасев В.А., Лучинин В.В.— Электрон. текстовые данные.— М.: ФИЗМАТЛИТ, 2009.— 464 с.— Режим доступа: http://www.iprbookshop.ru/36199.— ЭБС «IPRbooks»
- 17. Физические методы исследования и их практическое применение в химическом анализе [Электронный ресурс]: учебное пособие/ Н.Г. Ярышев [и др.].— Электрон. текстовые данные.— М.: Московский педагогический государственный университет, 2012.— 159 с.— Режим доступа: http://www.iprbookshop.ru/18633.— ЭБС «IPRbooks»
- 18. Каныгина О.Н. Физические методы исследования веществ [Электронный ресурс]: учебное пособие/ Каныгина О.Н., Четверикова А.Г., Бердинский В.Л.— Электрон. текстовые данные.— Оренбург: Оренбургский государственный университет, ЭБС АСВ, 2014.— 141 с.— Режим доступа: http://www.iprbookshop.ru/33663.— ЭБС «IPRbooks»

6.2 Дополнительная литература

- 1. Ч. Пул, Ф. Оуэнс, Нанотехнологии (2-е изд.), М., Техносфера, 2005, 334 с.
- 2. Кобояси Н. Введение в нанотехнологию, М., БИНОМ. Лаборатория знаний, 2005.134 с.
- 3. Миронов В.Л. Основы сканирующей зондовой микроскопии, М. Техносфера, 2005, 144 с.
- 4. Суздалев И.П. Нанотехнология. Физико-химия нанокластеров, наноструктур и наноматериалов, М., КомКнига, серия «Синергетика от прошлого к будущему», 2006 г., 592 с.

6.3 Нормативные правовые акты

6.4 Периодические издания

6.5 Методические указания к практическим занятиям/лабораторным занятиям

- 1. Методы исследования материалов и структур электроники. Методические указания к лабораторным работам / Сост.: В.Г. Литвинов, С.И. Мальченко, Н.Б. Рыбин, А.В. Ермачихин. Рязан. гос. радиотехн. университет. Рязань, 2012. 40 с.
- 2. Квантовая Физика. Методические указания к лабораторным работам/ Сост.: В.Г. Литвинов, Н.Б. Рыбин, Н.В. Рыбина, А.В. Ермачихин. Рязан. гос. радиотехн. университет.-Рязань, 2014.- 24 с.
- 3. Зондовые методы исследования материалов и структур электроники. Методические указания к лабораторным работам / Сост.: А.П. Авачев, В.Г. Литвинов, К.В. Митрофанов, В.Г. Мишустин. Рязан. гос. радиотехн. университет.- Рязань, 2011.- 48 с.
- 4. Методические рекомендации по подготовке студентов к текущему и промежуточному контролю освоения компетенций; сост.: Т.А.Холомина, Е.Н.Евдокимова / Рязан. гос. радиотехн. ун-т.- Рязань, 2016. 16 с.
- 5. Физика наносистем. Методические указания к лабораторным работам/ Сост.: В.Г. Литвинов, Н.Б. Рыбин, Н.В. Рыбина, А.В. Ермачихин, Д.С. Кусакин. Рязан. гос. радиотехн. университет.- Рязань, 2015.- 24 с.
- 6. Физика наносистем. Методические указания к лабораторным работам/ Сост.: В.Г. Литвинов, А.В. Ермачихин, Рязан. гос. радиотехн. университет. Рязань, 2017. 32 с.

6.6 Методические указания к курсовому проектированию (курсовой работе) и другим видам самостоятельной работы

Изучение дисциплины «Физика наносистем» проходит в 7 и 8 семестрах. Основные темы дисциплины осваиваются в ходе аудиторных занятий, однако важная роль отводится и самостоятельной работе студентов. Самостоятельное изучение тем учебной дисциплины способствует: закреплению знаний, умений и навыков, полученных в ходе аудиторных занятий; углублению и расширению знаний по отдельным вопросам и темам дисциплины; освоению умений прикладного и практического использования полученных знаний; освоению умений по исследованию характеристик и параметров материалов электронной техники.

Самостоятельная работа включает в себя следующие этапы:

- изучение теоретического материала (работа над конспектом лекции);
- самостоятельное изучение дополнительных информационных ресурсов (доработка конспекта лекции);
- выполнение заданий текущего контроля успеваемости (подготовка к лабораторным занятиям);
 - итоговая аттестация по дисциплине текущий контроль (подготовка к экзамену).

Работа над конспектом лекции: лекции — основной источник информации по предмету, позволяющий не только изучить материал, но и получить представление о наличии других источников, сопоставить особенности практического применения получаемых знаний. Лекции предоставляют возможность «интерактивного» обучения, когда есть возможность задавать преподавателю вопросы и получать на них ответы. Поэтому рекомендуется в день, предшествующий очередной лекции, прочитать конспекты двух предшествующих лекций, обратив особое внимание на содержимое последней лекции.

Доработка конспекта лекции с применением учебника, методической литературы, дополнительной литературы, интернет-ресурсов: позволяет самостоятельно изучить физику наносистем и ее применение в электронной технике, которые не рассмотрены во время лекций и лабораторных занятий. Кроме того, рабочая программа предполагает рассмотрение некоторых относительно несложных тем только во время самостоятельных занятий, без чтения лектором.

<u>Подготовка к лабораторному занятию:</u> состоит в теоретической подготовке (изучение конспекта лекций и дополнительной литературы) и подготовке предварительного отчета, который должен быть завершен при ее выполнении в лаборатории.

Методические требования к оформлению отчетов о лабораторных работах:

Отчет о лабораторной работе должен содержать следующие элементы:

- номер, название и цель работы;
- чертеж функциональной схемы установки, выполненный карандашом по линейке либо при помощи соответствующей компьютерной программы, с соблюдением требований ЕСКД;
 - основные расчетные соотношения;
- таблицы результатов экспериментов, выполненные карандашом по линейке либо при помощи соответствующей компьютерной программы;
- графики экспериментальных зависимостей, полученных при выполнении лабораторной работы;
- выводы, содержащие анализ экспериментальных зависимостей, сравнение результатов, полученных в работе, с данными справочной литературы.

Перед выполнением лабораторной работы каждому студенту необходимо иметь полностью оформленный отчет о ранее выполненной работе и отчет о выполняемой работе, содержащий все перечисленные элементы (за исключением экспериментальных данных в таблице, графиков, выводов). При несоблюдении указанных требований студент к лабораторной работе не допускается.

Подготовка к зачету, экзамену. В конце семестра при подготовке к аттестации студент должен повторить изученный в семестре материал и в ходе повторения обобщить его, сформировав цельное представление о нем. Следует иметь в виду, что на подготовку к промежуточной аттестации времени бывает очень мало, поэтому начинать эту подготовку надо заранее, не дожидаясь последней недели семестра, при этом основной вид подготовки — «свертывание» большого объема информации в компактный вид, а также тренировка в ее «развертывании» (примеры к теории, выведение одних закономерностей из других и т.д.). Надо также правильно распределить силы, не только готовясь к самому экзамену, но и позаботившись о допуске к нему (это добросовестное посещение занятий, выполнение в назначенный срок и активность на лабораторных занятиях). Следует всегда помнить, что залог успеха студента в учебе — планомерная работа в течение всего семестра и своевременное выполнение всех видов работы.

7 ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1. Сайт кафедры микро- и наноэлектроники РГРТУ: http://www.rsreu.ru/faculties/fe/kafedri/mnel.
- 2. Система дистанционного обучения $\Phi \Gamma EOY$ ВО «РГРТУ», режим доступа. http://cdo.rsreu.ru/
 - 3. Единое окно доступа к образовательным ресурсам: http://window.edu.ru/
 - 4. Интернет Университет Информационных Технологий: http://www.intuit.ru/
- 5. Электронно-библиотечная система «IPRbooks» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный, доступ из сети Интернет по паролю. URL: https://iprbookshop.ru/.

- 6. Электронно-библиотечная система издательства «Лань» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный, доступ из сети Интернет по паролю. URL: https://www.e.lanbook.com
- 7. Электронная библиотека РГРТУ [Электронный ресурс]. Режим доступа: из корпоративной сети РГРТУ по паролю. URL: http://elib.rsreu.ru/

8 ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. Операционная система Windows XP (Microsoft Imagine, номер подписки 700102019, бессрочно);
- 2. Операционная система Windows XP (Microsoft Imagine, номер подписки ID 700565239, бессрочно);
- 3. Kaspersky Endpoint Security (Коммерческая лицензия на 1000 компьютеров №2304-180222-115814-600-1595, срок действия с 25.02.2018 по 05.03.2019);
 - 4. LibreOffice
 - 5. Adobe acrobat reader
 - 6. Среда инженерно-графического программирования LabView 9
 - 7. Лицензионный пакет MathCAD
- 8. Справочная правовая система «Консультант Плюс» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный.

9 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для освоения дисциплины необходимы следующие материально-технические ресурсы:

- 1) аудитория для проведения лекционных и практических занятий, групповых и индивидуальных консультаций, текущего контроля, промежуточной аттестации, оборудованная маркерной (меловой) доской;
- 2) аудитория для самостоятельной работы, оснащенная индивидуальной компьютерной техникой с подключением к локальной вычислительной сети и сети Интернет;
 - 3) лаборатория электрофизических исследований.

№	Наименование специальных поме- щений и помещений для самостоя- тельной работы	Перечень специализированного оборудо- вания
1	Учебные аудитории для проведения за-	Специализированная мебель (70 посадочных
	нятий лекционного типа, занятий се-	мест)
	минарского типа, курсового проекти-	ПК Intel Celeron 1,8 ГГц – 1 шт.
	рования (выполнения курсовых работ),	Проектор Sanyo PLC-XP4
	групповых и индивидуальных консуль-	Экран
	таций, текущего контроля и промежу-	Аудиторная доска
	точной аттестации, № 267 главного	Возможность подключения к сети «Интер-
	учебного корпуса	нет» проводным и беспроводным способом и

	,	обеспечением доступа в электронную ин-
		формационно-образовательную среду РГРТУ.
2	Помещение для самостоятельной рабо-	Магнитно-маркерная доска;
	ты, лабораторного практикума № 203,	ПК Intel Celeron CPV J1800 – 25 шт;
	главный корпус	Возможность подключения к сети «Интер-
		нет» проводным и беспроводным способом и
		обеспечением доступа в электронную ин-
		формационно-образовательную среду РГРТУ.
3	Учебная лаборатория, оснащенная ла-	30 мест, доска магнитно-маркерная, экран
	бораторным оборудованием, № 341	настенный, 19 лабораторных стендов, в т.ч.3
	главного учебного корпуса	виртуальных лабораторных стен-
		да,вольтметры В7-21, В7-35,измерители Е4-
		7,Е9-4,осциллографы С1-64А,С1-75,ПЭВМ
		E2200 ASUS,компьютер Celeron 2500,блоки
		питания ВИП-010, автотрансформатор лабо-
		раторный ПК Intel Celeron 1,8 ГГц – 1 шт.
		Проектор Sanyo PLC-XP4
	e	Экран
		Аудиторная доска
		Возможность подключения к сети «Интер-
		нет» проводным и беспроводным способом и
		обеспечением доступа в электронную ин-
		формационно-образовательную среду
		РГРТУ.
4	Аудитория для хранения и ремонта	2 компьютера: ПЭВМ на базе CPU E5300
	оборудования, № 343 главного учебно-	Dual Core 2,6 GHz, ПЭВМ E2200 ASUS,
	го корпуса	принтер hp 1010, копир. аппарат Canon 5 мест

Программу составил: д.ф.-м.н., доцент, зав. кафедрой МНЭЛ

(Литвинов В.Г.)