МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Космические технологии»

«СОГЛАСОВАНО»

Декан факультета ВТ

Д.А. Перепелкин

«25» об 2020 г.

«УТВЕРЖДАЮ»

Проректор РОП и МД

А.В. Корячко

2020 г.

Заведующий кафедрой КТ

С.И. Гусев 2020 г.

РАБОЧАЯ ПРОГРАММА

дисциплины

Б1.В.07 «Электроника, микроэлектроника и наноэлектроника»

Направление подготовки – 02.03.01 «Математика и компьютерные науки»

ОПОП академического бакалавриата «Математика и компьютерные науки»

Квалификация выпускника — бакалавр Форма обучения — очная

ЛИСТ СОГЛАСОВАНИЙ

Рабочая программа составлена с учетом требований Федерального государственного образовательного стандарта высшего образования по направлению подготовки (специальности) 02.03.01 «Математика и компьютерные науки» (уровень бакалавриата), утверждённого приказом Минобрнауки России № 807 от 23.08.2017 г.

Разработчик		
к.фм.н., доцент кафедры «Космические технологии»	floredo	А.Б. Толстогузов
Программа рассмотрена и одобретехнологии» «23» июня 2020 г., прот		афедры «Космические
Заведующий кафедрой «Космические технологии»		С.И. Гусев

1. ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью освоения дисциплины является приобретение базовых знаний и умений в соответствии с Федеральным Государственным Образовательным Стандартом и формирование у студентов теоретических знаний и практических навыков в части базовых понятий современной электроники, микро- и наноэлектроники, получение актуальной информации об основных областях применения приборов, устройств и материалов электроники, микро- и наноэлектроники, включая компьютерные, космические, биомедицинские, военные и специальные технологии, а также подготовка обучающихся к проектно-конструкторской, научно-исследовательской и организационно-управленческой деятельности.

Задачи:

- получение знаний о современных технологиях, приборах и материалах электроники, микро- и наноэлектроники, о методах получения и диагностики этих материалов;
- выработка навыков по анализу и обработке научно-технической информации для ориентации в тенденциях и направлениях развития современной электроники, микро- и наноэлектроники;
- систематизация и закрепление полученных знаний, необходимых для решения научноисследовательских и производственно-технологических задач в рамках основной профессиональной деятельности по направлению 02.03.01 «Математика и компьютерные науки».

Перечень основных задач профессиональной деятельности выпускников (по типам)

Область профессиональной деятельности (по Реестру Минтруда)	Типы задач профессиональной деятельности	Задачи профессиональной деятельности	Объекты профессиональной деятельности (или области знания)
40 - Сквозные виды профессиональной	Научно - исследовательский	Проведение научно- исследовательских и	Электронно - вычислительные
деятельности		опытно- конструкторских разработок при исследовании самостоятельных тем	машины, комплексы, системы и сети
06 - Связь, информационные и коммуникационные технологии	Производственно - технологический	обеспечения информационных систем	Электронно - вычислительные машины, комплексы, системы и сети

1	T	
	информационных систем в процессе ее эксплуатации. Информационное обеспечение прикладных процессов	
Организационно - управленческий	Участие в проведении переговоров с заказчиком и презентация проектов. Участие в координации работ по созданию, адаптации и сопровождению информационной системы. Участие в организации работ по управлению проектами информационных систем. Взаимодействие с заказчиком в процессе реализации проекта. Участие в управлении техническим сопровождением информационной системы в	Электронновычислительные машины, комплексы, системы и сети
Проектный	процессе ее эксплуатации. Сбор и анализ детальной информации для формализации предметной области проекта и требований пользователей заказчика, интервьюирование ключевых сотрудников заказчика. Формирование и анализ требований к информатизации и автоматизации прикладных процессов, формализация предметной области проекта. Моделирование прикладных и информационных процессов. Составление технико- экономического обоснования проектных решений и технического задания на разработку информационной системы. Проектирование	Электронно - вычислительные машины, комплексы, системы и сети

информационных систем по
видам обеспечения.
Программирование
приложений, создание
прототипа информационной
системы.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина Б1.3.Б.09 «Электроника, микроэлектроника и наноэлектроника» относится к дисциплинам обязательной части блока Б1 «Дисциплины (модули)» основной профессиональной образовательной программы (далее - образовательной программы) бакалавриата «Математика и компьютерные науки» направления 02.03.01 «Математика и компьютерные науки».

Дисциплина изучается в рамках очной формы обучения на 2 курсе в 4-м семестре и базируется на знаниях, полученных студентами в ходе изучения основных разделов физики и математики в средней школе и на 1-м курсе университета.

Для освоения дисциплины обучающийся должен знать:

- основные законы физики, методы и приемы элементарной математики; уметь:
- применять математические методы при расчетах и обработке результатов исследований; владеть:
- навыками изучать и анализировать учебную и научно-техническую литературу.

Результаты обучения, полученные при освоении данной дисциплины, необходимы при изучении следующих дисциплин: «Основы конструирования электронных средств», «Мехатроника и робототехника», а также при выполнении выпускной квалификационной работы.

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В соответствии ФГОС ВО процесс изучения дисциплины направлен на формирование следующих профессиональных компетенций (ПК) в области научно-исследовательской деятельности:

- **ПК-3** способность строго доказывать утверждение, сформулировать результат и увидеть следствие полученного результата в области электроники, микроэлектроники и наноэлектроники;
- **ПК-5** способность использовать методы математического и алгоритмического моделирования при решении теоретических и прикладных задач в области электроники, микроэлектроники и наноэлектроники.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Объем дисциплины по семестрам и видам занятий с указанием количества академических часов, выделенных на контактную работу обучающихся с преподавателем (по видам занятий) и на самостоятельную работу обучающихся Общая трудоемкость дисциплины в соответствии с учебным планом составляет 4 зачетные единицы (3E) -144 часа.

Вид учебной работы	Всего часов	Семестр
		4
Аудиторные занятия, в том числе	50.35	50.35
Лекции (Л)	32	32
Упражнения (У)	16	16
Консультации (К)	2.35	2.35
Самостоятельная работа	49	49
Контроль	44.65	44.65

4.2. Разделы дисциплины и трудоемкость по видам учебных занятий (в академических часах)

№	Раздел дисциплины	Общая трудо- ем-	Контактная работа обучающихся с преподавателем		Само- стоя- тельная	
		кость, всего часов	всего	лекции	упражне- ния	работа обуча- ющихся
	Bcero	97	48	32	16	49
1	Введение и предмет изучения дисциплины «Электроника, микроэлектроника и наноэлектроника»	32	16	14	2	16
2	Нанотехнологии и наноматериалы	33	16	10	6	17
3	Современные области применения и перспективы развития электроники, микро- и наноэлектроники	32	16	8	8	16

4.3. Содержание дисциплины

4.3.1. Лекционные занятия

No	Темы лекционных занятий	Трудоемкость	Формируемые	Форма
п/п		(час)	компетенции	контроля
1	История развития и современное состояние электроники, микро- и наноэлектроники. Основные научные термины и определения. Важнейшие открытия. Закон Мура. Электроника и микроэлектроника в СССР. Центр микроэлектроники в Зеленограде.		ПК-3, ПК-5	экзамен
2	Вакуумная электроника и вакуумная техника. Вакуум, средства откачки и контроля вакуума. Современные приборы вакуумной электроники.	2	ПК-3, ПК-5	экзамен
3	Полупроводниковая электроника. Классификация полупроводниковых материалов, методы их получения и очистки. Донорные и акцепторные примеси. Р-N-переходы. Основные полупроводниковые приборы, области их применения и перспективы развития	2	ПК-3, ПК-5	экзамен
4	Микроэлектроника. Этапы развития микро- электроники. Классификация интегральных микросхем. Основные технологические опе- рации. Аналоговые, цифровые и аналого- цифровые микросхемы. Надежность и отка- зы.	2	ПК-3, ПК-5	экзамен
5	Пьезо- и акустоэлектроника. Криогенная электроника. Магнитоэлектроника и и спинтроника. Физические основы и приборная	2	ПК-3, ПК-5	экзамен
6, 7	Оптоэлектроника и квантовая электроника. Источники излучения. Светодиоды и лазеры. Приемники излучения. Индикаторы и экраны. Волоконная оптика.	4	ПК-3, ПК-5	экзамен
8, 9	Нанотехнологии и наноматериалы. Основные термины и определения.	4	ПК-3, ПК-5	экзамен
10	Методы зондовой нанотехнологии. Сканирующий туннельный микроскоп. Атомносиловой микроскоп. Кластерные нанотехнологические комплексы.	2	ПК-3, ПК-5	экзамен
11	Электронная микроскопия. Физические основы, аппаратная реализация, применение.	2	ПК-3, ПК-5	экзамен
12	Масс-спектрометрия. Физические основы, аппаратная реализация, применение.	2	ПК-3, ПК-5	экзамен

13,14	Приборы и устройства наноэлектроники. Нанотранзисторы, приборы и устройства одноэлектроники, нанофотоники. наноплазмоники и мемристорной электроники. Квантовый компьютер.	4	ПК-3, ПК-5	экзамен
15	Космические, военные и специальные технологии. Космический лифт. Электростатические ракетные двигатели. Метаматериалы.	2	ПК-3, ПК-5	экзамен
16	Биомедицинские технологии. Медицина и фармакология. Медицинская инженерия. Имплантология и протезирование. Биосовместимые покрытия.	2	ПК-3, ПК-5	экзамен

4.3.2. Упражнения (семинары)

№	Темы упражнений (семинаров)	Трудоемкость	Формируемые	Форма
п/п		(час)	компетенции	контроля
1	История развития электронной промышленности в Рязани. Научно-исследовательский технологический институт (НИТИ).	2	ПК-3, ПК-5	экзамен
2, 3	Ознакомление с работой сканирующих зондовых и электронных микроскопов (микроанализаторов) в Региональном центре зондовой микроскопии РГРТУ.	4	ПК-3, ПК-5	экзамен
4	Обработка данных научных экспериментов.	2	ПК-3, ПК-5	экзамен
5	Научные фонды, гранты, проекты, патенты и публикации. Подготовка научных публикаций и проектов.	2	ПК-3, ПК-5	экзамен
6,7	Этапы развития новой технологии. Инновационный треугольник. Самостоятельно подготовленные доклады студентов.	4	ПК-3, ПК-5	экзамен
8	Герконы. Разработка инновационных азотосо- держащих покрытий на РЗМКП. Подведение итогов изучения дисциплины «Электроника, микроэлектроника и наноэлектроника».	2	ПК-3, ПК-5	экзамен

4.3.3. Самостоятельная работа

№ п/п	Тематика самостоятельной работы	Трудоемкость (час)	Формируемые компетенции	Форма контроля
1	Введение и предмет изучения дисциплины «Электроника, микроэлектроника и наноэлектроника»	6	ПК-3, ПК-5	экзамен
2	Нанотехнологии и наноматериалы. Приборы и устройства наноэлектроники.	8	ПК-3, ПК-5	экзамен
3	Методы зондовой нанотехнологии, электронная микроскопия, электронная и ионная спектроскопия, масс-спектрометрия.	8	ПК-3, ПК-5	экзамен
4	Современные области применения и перспективы развития электроники, микро- и наноэлектроники.	9	ПК-3, ПК-5	экзамен
5	Подготовка докладов по темам, предложенным преподавателем	18	ПК-3, ПК-5	экзамен

4.3.4. Темы докладов

- 1. Квантовый компьютер
- 2. Метаматериалы
- 3. Космический лифт
- 4. Нанотехнологии в медицине. Здоровый образ жизни
- 5. Военные и специальные нанотехнологии
- 6. Электростатические ракетные двигатели
- 7. Водородные технологии
- 8. Нанотехнологии в добыче нефти и газа

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Оценочные материалы приведены в приложении к рабочей программе дисциплины (см. документ «Оценочные материалы по дисциплине «Электроника, микроэлектроника и наноэлектроника»).

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- 6.1. Основная учебная литература
- 1. Наноэлектроника/ Борисенко В.Е., Воробьёва А.И., Уткина Е.А. М.: Бином Лаборатория знаний. 2009. 223 c.(https://studfiles.net/preview/6449045/)
- 2. Щука А.А. Электроника. Учебное пособие для студентов ВУЗов. СПб.: БХВ. 2005. 175 с. (https://www.twirpx.com/file/546387/)
- 3. Светцов В.И. Вакуумная и плазменная электроника. Учебное пособие для студентов ВУЗов. Иваново: Иван. гос. хим.-технологический ун-т. 2003. 172 с. (http://window.edu.ru/resource/528/69528/files/vpe.pdf)

- 4. Гуртов В.А. Твердотельная электроника. Учебное пособие для студентов ВУЗов. Петрозаводск: ПетрГУ. 2004. 312 с.
- (http://www.saytina.narod.ru/mat/Tverdoteln_elektronika_Gurtov_book.pdf)
- 5. Гатчин Ю.А., Ткалич В.Л., Виволанцев А.С., Дудников Е.А. Введение в микроэлектронику. Учебное пособие. СПб: СПбГУ. 2010. 114 с. (https://books.ifmo.ru/file/pdf/672.pdf)
- 6. Самохвалов М.К. Элементы и устройства оптоэлектроники. Учебное пособие. Ульяновск: УлГУ. 2003. 125 с. (https://www.twirpx.com/file/2101532/)
- 7. Коваленко А.А. Основы микроэлектроники. Учебное пособие для студентов ВУЗов. М.: Академия. 2006. 210 с. (http://mirknig.su/knigi/tehnicheskie_nauki/140505-osnovy-mikroelektroniki-uchebnoe-posobie-dlya-vuzov.html)
- 8. Шишкин Г.Г., Агеев И.М. Наноэлектроника. Элементы, приборы, устройства: учеб. пособие. М: БИНОМ. Лаборатория знаний. 2011. 408 с. (https://studfiles.net/preview/6449043/)
- 9. Пул Ч., Оуэнс Ф. Нанотехнологии. М.: Техносфера. 2010. 336 с. (http://www.studmed.ru/pul-ch-ouens-f-nanotehnologii_867d164417f.html)
- 10. Неволин В.К. Зондовые нанотехнологии в электронике М.: Техносфера. 2005. 152 с. (http://www.technosphera.ru/files/book_pdf/0/book_370_715.pdf)
- 11. Нанотехнологии в электронике. / Под ред. Ю.А. Чаплыгина М.: Техносфера. 2005. 448 с. (https://www.twirpx.com/file/199754/)
- 12. Барыбин А.А. Томилин В.И., Шаповалов В.И. Физико-технологические основы макро-, микро- и наноэлектроники М.: Физматлит. 2011. 784 с. (https://www.twirpx.com/file/2531186/)
- 13. Драгунов В.П., Неизвестный И.Г. Наноструктуры: физика, технология, применение. Учебное пособие. Новосибирск: НГТУ. 2008. 356 с. (https://studfiles.net/preview/5829084/)
 - 6.2. Дополнительная учебная литература
- 1. Розеншер Э., Винтер Б. Оптоэлектроника. М.: Техносфера, 2006. 592 с. (https://www.twirpx.com/file/218243/)
- 2. Аваев Н.А., Наумов Ю.Е., Фролкин В.Т. Основы микроэлектроники. Учебное пособие для студентов ВУЗов. М.: Радио и связь. 1991. 153 с. (https://www.twirpx.com/file/2100762/)
- 3. Миронов В.Л. Основы сканирующей зондовой микроскопии М: Техносфера, 2005. 144 c. (https://www.twirpx.com/file/135397/)
- 4. Старостин В.В. Материалы и методы нанотехнологий: Учебное пособие, 2-е изд. М: БИНОМ. Лаборатория знаний, 2010. 431 с. (http://files.pilotlz.ru/pdf/cC1444-7-ch.pdf)
- 5. Кобаяси Н. Введение в нанотехнологию М.: Бином, 2008. 136 с. (http://booktech.ru/books/nanotehnologii/12733-vvedenie-v-nanotehnologiyu-2008-n-kobayasi.html)
- 6. Вихров С.П., Холомина Т.А. Нанотехнологии и биосистемы. Научное издание. Рязань: «Сервис». 2010, 236 с.
- (http://rsreu.ru/?option=com_content&view=article&id=233&Itemid=447&lang=ru&spec=1)
 7. Толстогузов А.Б., Белых С.Ф., Гуров В.С., Лозован А. А., Таганов А.И. и др. Источни-
- 7. Толстогузов А.Б., велых С.Ф., Гуров В.С., Лозован А. А., Таганов А.И. и др. источники ионов на основе низкотемпературных ионных жидкостей для аэрокосмического применения, нанотехнологии и микрозондового анализа (обзор) / *Приборы и техника эксперимента*. 2015. №1. С. 5. (https://elibrary.ru/item.asp?id=22840923)
- 8. Толстогузов А.Б., Белых С.Ф., Гололобов Г.П., Гуров В.С., Гусев С.И., Суворов Д.В., Таганов А.И., Fu D.J., Aid Z., Liu C.S. Ионные источники на твердых электролитах для аэрокосмического применения и ионно-лучевых технологий (обзор) / Приборы и техника эксперимента. 2018. №2. С. 5. (https://elibrary.ru/item.asp?id=32619952)
- 9. Толстогузов А.Б. Атомно-зондовая масс-спектрометрия (обзор) / *Macc-спектрометрия*. 2009. Т. 6, № 4. С. 280. (http://www.vmso.ru/datadocs/%D1%EE%E4%E5%F0%E6%E0%ED%E8%E5%20%F2%EE%EC%E0%20%B9%206.pdf)

10. Мажаров П.А., Дудников В.Г., Толстогузов А.Б. Электрогидродинамические источники ионных пучков (обзор)/ *Успехи физических наук*. 2020. Т. 190, №12. С. 1293. (https://ufn.ru/ru/articles/2020/12/c/)

- 6.3. Периодические издания
- 1. Журнал "Российские нанотехнологии" (http://nanorf.elpub.ru/jour)
- 2. Журнал "Haнотехника" (http://www.nanotech.ru/journal/)
- 3. Журнал «Нанотехнологии: разработка, применение XXI век»

(http://www.radiotec.ru/journal_section/17)

- 4. Журнал "Известия вузов. Электроника" (http://ivuz-e.ru/)
- 5. Журнал "Микроэлектроника"

(https://www.naukaran.com/zhurnali/katalog/mikrojelektronika/)

- 6. Журнал "Известия вузов. Материалы электронной техники" (http://met.misis.ru/jour)
- 7. Журнал "Приборы и техника эксперимента"

(https://www.naukaran.com/zhurnali/katalog/pribory-i-tehnika-jeksperimenta/)

- 8. Журнал «Вестник РГРТУ» (http://vestnik.rsreu.ru/ru/)
- 6.4. Методические указания к самостоятельной работе

Изучение дисциплины «Электроника, микроэлектроника и наноэлектроника» проходит в течение 1 семестра. Основные темы дисциплины осваиваются в ходе аудиторных занятий, однако важная роль отводится и самостоятельной работе студентов.

Самостоятельная работа включает в себя следующие этапы:

- изучение теоретического материала (работа над конспектом лекции);
- самостоятельное изучение дополнительных информационных ресурсов (доработка конспекта лекции);
- итоговая аттестация по дисциплине (подготовка к зачету).

Работа над конспектом лекции: лекции — основной источник информации по предмету, позволяющий не только изучить материал, но и получить представление о наличии других источников, сопоставить разные способы практического применения получаемых знаний. Лекции предоставляют возможность «интерактивного» обучения, когда есть возможность задавать преподавателю вопросы и получать на них ответы. Поэтому рекомендуется в день, предшествующий очередной лекции, прочитать конспекты двух предшествующих лекций, обратив особое внимание на содержимое последней лекции.

<u>Доработка конспекта лекции</u> с применением учебника, дополнительной литературы, периодических изданий, интернет-ресурсов.

<u>Подготовка к зачету:</u> основной вид подготовки – «свертывание» большого объема информации в компактный вид, а также тренировка в ее «развертывании». Надо также правильно распределить силы, не только готовясь к самому зачету, но и позаботившись о допуске к нему (это хорошее посещение занятий, активность на упражнениях).

7. ПЕРЕЧЕНЬ РЕСУРСОВ ИНФОРМАЦИОННО-ТЕЛЕКОММУНИКАЦИОННОЙ СЕТИ «ИНТЕРНЕТ», НЕОБХОДИМЫХ ДЛЯ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1. Системе дистанционного обучения $\Phi \Gamma EOY$ ВО «РГРТУ», режим доступа. http://cdo.rsreu.ru/
- 2. Единое окно доступа к образовательным ресурсам: http://window.edu.ru/
- 3. Интернет Университет Информационных Технологий: http://www.intuit.ru/
- 4. Электронно-библиотечная система «IPRbooks» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный, доступ из сети Интернет по паролю. URL: https://iprbookshop.ru/.

- 5. Электронно-библиотечная система издательства «Лань» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный, доступ из сети Интернет по паролю. URL: https://www.e.lanbook.com
- 6. Электронная библиотека РГРТУ [Электронный ресурс]. Режим доступа: из корпоративной сети РГРТУ по паролю. URL: http://elib.rsreu.ru/
- 7. Справочная система «Единое окно» (доступ к информационным ресурсам) http://window.edu.ru/unilib/
- 8. Университетская библиотека ONLINE https://biblioclub.ru/index.php?page=static&id=8
- 9. Электронно-библиотечная система «КнигаФонд» http://www.knigafund.ru/

8. ПЕРЕЧЕНЬ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, ИСПОЛЬЗУЕМЫХ ПРИ ОСУЩЕСТВЛЕНИИ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ПО ДИСЦИПЛИНЕ, ВКЛЮЧАЯ ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ И ИНФОРМАЦИОННЫХ СПРАВОЧНЫХ СИСТЕМ

- 1. Операционная система Windows XP (Microsoft Imagine, номер подписки 700102019, бессрочно);
- 2. LibreOffice;
- 3. Adobe Acrobat Reader;
- 4. Справочная правовая система «Консультант Плюс» [Электронный ресурс]. Режим доступа: доступ из корпоративной сети РГРТУ свободный.

9. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Для освоения дисциплины необходимы следующие материально-технические ресурсы:

- 1) аудитория для проведения лекций и упражнений, групповых и индивидуальных консультаций, текущего контроля, промежуточной аттестации, оборудованная маркерной (меловой) доской;
- 2) аудитория для самостоятельной работы, оснащенная индивидуальной компьютерной техникой с подключением к локальной вычислительной сети и сети Интернет.

№	Наименование специальных поме- щений и помещений для самостоя-	Перечень специализированного обору- дования
	тельной работы	7,1
1	Учебная аудитория для проведения занятий лекционного типа, упражнений, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации (№ 260 главный учебный корпус)	Персональный компьютер Celeron 2400-4 Проектор Toshiba TDP-T45 Возможность подключения к сети «Интернет» проводным и беспроводным способом и обеспечением доступа в электронную информационно-образовательную среду РГРТУ
2	Помещение для самостоятельной работы студентов (№ 501к 2-й лабораторный корпус)	ПК Intel Celeron CPV J1800 – 25 шт; Возможность подключения к сети «Интернет» проводным и беспроводным способом и обеспечением доступа в электронную информационнообразовательную среду РГРТУ

Программу разработал доцент кафедры «Космические технологии» к.ф.-м.н., доцент

Allone

А.Б. Толстогузов