МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

КАФЕДРА ПРОМЫШЛЕННАЯ

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

ЧИСЛЕННЫЕ МЕТОДЫ В ЗАДАЧАХ ЭЛЕКТРОНИКИ

1. ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Фонд оценочных средств — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

При оценивании (определении) результатов освоения дисциплины применяется традиционная система (зачтено, незачтено).

2. Паспорт фонда оценочных средств по дисциплине (модулю)

№ п/ п	№ раз дел а	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контрол и- руемойк омпетен- ции (или её части)	Этап формирования контролируемой компетенции (или её части)	Наименование оценочного средства
1	1	Введение	ОПК-4.1, ОПК-4.2, ОПК-5.1, ОПК-5.2	Лекционные и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельно й работе, ответы на тестовые задания, зачет
2	2	Аппроксимация функции	ОПК-4.1, ОПК-4.2, ОПК-5.1, ОПК-5.2	Лекционные, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельно й работе, отчеты по лабораторным работам, ответы на тестовые задания, зачет
3	3	Численное интегрирование и дифференцирование	ОПК-4.1, ОПК-4.2, ОПК-5.1, ОПК-5.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельно й работе, ответы на тестовые

					задания, зачет
4	4	Численные методы решения систем линейных уравнений	ОПК-4.1, ОПК-4.2, ОПК-5.1, ОПК-5.2	Лекционные, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельно й работе, отчеты по лабораторным работам, ответы на тестовые задания, зачет
5	5	Численные методы решения нелинейных уравнений	ОПК-4.1, ОПК-4.2, ОПК-5.1, ОПК-5.2	Лекционные, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельно й работе, отчеты по лабораторным работам, ответы на тестовые задания, зачет
6	6	Численные методы решения обыкновенных дифференциальных уравнений	ОПК-4.1, ОПК-4.2, ОПК-5.1, ОПК-5.2	Лекционные, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельно й работе, ответы на тестовые задания, зачет
7	7	Численные методы решения уравнений с частными производными	ОПК-4.1, ОПК-4.2, ОПК-5.1, ОПК-5.2	Лекционные и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельно й работе, ответы на тестовые задания, зачет
8	8	Методы обработки численных результатов	ОПК-4.1, ОПК-4.2, ОПК-5.1, ОПК-5.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельно й работе, ответы на тестовые задания, зачет

3. Формы текущего контроля

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся: на занятиях, по результатам выполнения обучающимися индивидуальных заданий, проверки качества конспектов лекций и иных материалов.

Текущий контроль по дисциплине проводится в виде тестовых опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно, на лабораторных и практических занятиях, а также экспресс – опросов по лекционным материалам.

4. Формы промежуточного контроля

Формой промежуточного контроля по дисциплине является зачет. Форма проведения зачета — устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины.

Целью проведения промежуточной аттестации (зачета) является проверкаобщепрофессиональных и профессиональных компетенций, приобретенных студентом при освоении дисциплины.

5. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, шкал оценивания

Оценка степени формирования указанных выше (п.п. 1 и 6.1) контролируемых компетенций у обучающихся на различных этапах их формирования проводится преподавателем во время консультаций, лабораторных работ по шкале оценок «зачтено» – «не зачтено». Текущий контроль по дисциплине проводится в виде тестовых опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно, и на лабораторных занятиях, а также экспресс – опросов и заданий по лекционным материалам, лабораторным работам. Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах лабораторных занятий и самостоятельной работы оценивается по критериям шкалы оценок - «зачтено» – «не зачтено». Для получения оценки «зачтено» обучающемуся необходимо подтвердить освоение формируемых компетенций не менее, чем на 75%. Освоение материала дисциплины и достаточно высокая степень формирования контролируемых компетенций обучающегося (не менее, чем 75%) служат основанием для допуска обучающегося к этапу промежуточной аттестации - зачету.

Целью проведения промежуточной аттестации (зачета) является проверка компетенций, приобретенных студентом при изучении дисциплины «Численные методы решения задач электроники».

Уровень теоретической подготовки студента определяется составом и степенью формирования приобретенных компетенций, усвоенных теоретических знаний и методов, а также умением осознанно, эффективно применять их при решении задач в области изучаемого предмета.

Зачет организуется и осуществляется, как правило, в форме собеседования. Средством, определяющим содержание собеседования студента с преподавателем, являются билет, содержание которого определяется ОПОП и настоящей рабочей программой. Билет включает в себя, как правило, два вопроса, которые относятся к указанным выше теоретическим разделам дисциплины.

Оценке на заключительной стадии зачета подвергаются устные ответы студента на вопросы билета, а также дополнительные вопросы преподавателя.

Применяется шкала оценок: "зачтено", "не зачтено", что соответствует шкале "компетенции студента соответствуют требованиям ФГОС ВО", "компетенции студента не соответствуют требованиям ФГОСВО".

6. Критерии оценивания промежуточной аттестации

Таблица 1 - Критерии оценивания промежуточной аттестации

Шкала оценивания	Критерии оценивания				
«зачтено»	студент должен: продемонстрировать достаточно полное знание				
	материала; продемонстрировать знание основных теоретических				
	понятий; достаточно последовательно, грамотно и логически				
	стройно излагать материал; уметь сделать достаточно				
	обоснованные выводы по излагаемому материалу; ответить на				
	все вопросы билета; продемонстрировать умение правильно				
	выполнять практические задания, предусмотренные программой,				
	при этом возможно допустить непринципиальные ошибки.				
«незачтено»	ставится в случае: незнания значительной части программного				
	материала; не владения понятийным аппаратом дисциплины;				
	существенных ошибок при изложении учебного материала;				
	неумения строить ответ в соответствии со структурой				
	излагаемого вопроса; неумения делать выводы по излагаемому				
	материалу. Как правило, оценка «неудовлетворительно» ставится				
	студентам, которые не могут продолжить обучение по				
	образовательной программе без дополнительных занятий по				
	соответствующей дисциплине (формирования и развития				
	компетенций, закрепленных за данной дисциплиной). Оценка				
	«неудовлетворительно» выставляется также, если студент после				
	начала экзамена отказался его сдавать или нарушил правила				
	сдачи экзамена (списывал, подсказывал, обманом пытался				
	получить более высокую оценку и т.д.).				

Примеры заданийи контрольных вопросов к лабораторным работам, выполняемым для приобретения и развития знаний и практических умений, предусмотренных компетенциями. Лабораторная работа №3

Численные методы решения нелинейных уравнений

Цель работы

Изучение численных методов решения нелинейных уравнений и приобретение навыков в составлении программ, реализующих эти методы.

Задание к лабораторной работе

Составить программу для вычисления с помощью ЭВМ всех корней уравнения, заданного преподавателем, с точностью 10^{-6} . Предусмотреть в программе счетчик числа итераций.

Контрольные вопросы

- 1. Что называется корнем уравнения?
- 2. Зачем надо отделять корни уравнений?
- 3 Способы отделения корней.
- 4. Суть метода половинного деления.
- 5. Суть метода хорд.
- 6. Суть метода касательных.
- 7 Суть метода простой итерации. Его недостаток.

Содержание отчета

- 1. Задание
- 2. Блок-схема программы.
- 3. Текст программы.
- 4. Результаты расчетов.
- 5. Выводы.

Полный перечень заданий и вопросов к лабораторным работам, выполняемым для приобретения и развития знаний и практических умений, предусмотренных компетенциями, приведен в соответствующих методических указаниях.

1. Численные методы решения задач электроники: методические указания к лабораторным работам / Рязан. гос. радиотехн. ун-т; сост.: В.Н. Козлов. Рязань, 2015. 16 с.

Примеры заданий и контрольных вопросов к практическим работам, выполняемым для приобретения и развития знаний и практических умений, предусмотренных компетенциями.

Практическая работа №4 **Методы обработки численных результатов**

Цель работы

Изучение численных методов аппроксимации экспериментальных данных и приобретение навыков в составлении программ, реализующих эти методы.

Задание к работе

Некоторая функция задана таблицей, содержащей 8 пар значений х и у.

X	10	20	30	40	50	60	70	80
у	2.5	3.2	3.7	4.0	4.2	4.4	4.6	4.75

Составить программу для аппроксимации этой функцииметодом наименьших квадратов:

- а) линейной функцией;
- б) функцией вида $a \log(b \cdot x)$;
- в) функцией вида $a \cdot x^b$;
- г) функцией вида $a \cdot e^{bx}$.

Построить на одном графике заданную таблицей функцию и соответствующую аппроксимирующую функцию. Сравнить величины среднеквадратических отклонений. Пользуясь каждой функцией а-г, вычислить контрольное приближенное значение f(35).

Контрольные вопросы

- 1. Что называется аппроксимацией?
- 2. Суть метода наименьших квадратов?
- 3. Как выбирается аппроксимирующая зависимость?

Список типовых контрольных вопросов для оценки уровня сформированности знаний, умений и навыков, предусмотренных компетенциями, закрепленными за дисциплиной.

- 1. Понятие погрешности. Источники погрешности.
- 2. Устойчивость. Корректность. Сходимость.
- 3. Глобальная и локальная аппроксимации. Канонический полином.
- 4. Линейная и квадратичная интерполяция.
- 5. Многочлен Лагранжа. Многочлен Ньютона.
- 6. Интерполяция сплайнами.
- 7. Аппроксимация. Метод наименьших квадратов.

- 8. Аппроксимация производных. Погрешность численного дифференцирования.
- 9. Использование интерполяционных формул для дифференцирования.
- 10. Численное интегрирование. Метод прямоугольников и трапеций.
- 11. Численное интегрирование. Метод Симпсона.
- 12. Системы линейных уравнений. Метод Гаусса.
- 13. Системы линейных уравнений. Модифицированный метод Гаусса (метод Гаусса с постолбцовым выбором главного элемента).
 - 14. Метод прогонки.
 - 15. Системы линейных уравнений. Метод простой итерации.
 - 16. Системы линейных уравнений. Метод Зейделя.
 - 17. Системы линейных уравнений. Метод релаксации.
 - 18. Методы решения нелинейных уравнений. Метод деления отрезка пополам.
 - 19. Методы решения нелинейных уравнений. Метод хорд.
 - 20. Методы решения нелинейных уравнений. Метод Ньютона.
 - 21. Методы решения нелинейных уравнений. Метод простой итерации.
 - 22. Методы решения систем нелинейных уравнений.
 - 23. Методы решения дифференциальных уравнений. Метод Эйлера.
 - 24. Методы решения дифференциальных уравнений. Модифицированный метод Эйлера.
 - 25. Методы решения дифференциальных уравнений. Метод Рунге-Кутта.
 - 26. Методы решения систем дифференциальных уравнений. Метод Рунге-Кутта.

Типовые тестовые задания для укрепления и проверки теоретических знаний, развития умений и навыков, предусмотренных компетенциями, закрепленными за дисциплиной.

- 1. Выберите методы, которые сводят решение задачи к выполнению конечного числа арифметических действий над числами, а результаты в виде числовых значений:
 - а) графические методы;
 - б) аналитические методы;
 - в) численные методы.
 - 2. Погрешности, связанные с системой счисления:
 - а) погрешность округления;
 - б) погрешность действий;
 - в) погрешности задач;
 - г) остаточная погрешность;
 - д) относительная погрешность.
 - 3. Методом половинного деления уточнить корень уравнения $x^4 + 2x^3 x 1 = 0$:
 - a) 1,198+0,0020;
 - б) 1,16+0,02;
 - B) 2+0,1;
 - Γ) 3,98+0,001;
 - д) 4,2+0,0001.
- 4. Используя метод хорд найти положительный корень уравнения $x^4+0.2x^2-0.2x-1.2=0$:
 - а) к разрушению поверхности образца;
 - б) к появлению искажений на изображении поверхности;
 - в) к резкому уменьшению туннельного тока;
 - г) к разрушению поверхности зонда.

8 Вычислить Ньютона отрицательный методом корень уравнения $x^4 - 3x^2 + 75x - 10000 = 0$: a) -10,261; 6) -10,31;B) -5,6; Γ) -3,2; $_{\rm J}$) -0.44. 6. Найти действительные корни уравнения x-sinx=0,25? a) 1,17; б) 1,23; в) 2,45; г) 4,8. 7. Определить число отрицательных корней положительных И число уравнения $x^4 - 4x + 1 = 0$: а) 2 и 0; б) 3 и 2; в) 0 и 4; г) 0 и 1; д) 0 и 4. 8. Метод, представляющий собой конечные алгоритмы для вычисления корней системы: а) точный метод; б) метод релаксации; в) метод итерации; г) приближенный метод; д) относительный метод. 9.Метод позволяющий получить корни системы с заданной точностью путем сходящихся бесконечных процессов. а) итерационный метод; б) точный метод; в) приближенный метод; г) относительный метод; д) метод Зейделя. 10. Укажите рекуррентную формулу метода простой итерации: a) $x_{n+1} = \varphi(x_n);$ б) x=C; B) $x_{n+1} = \psi(x_n) + \varphi(x_n)$; $\Gamma) x_{n-1} = \psi(x_n) - \varphi(x_n).$ 11. Методом хорд уточнить корень уравнения $x^3 - 2x - 3 = 0$, $\xi[1;2]$; $\varepsilon=10^{-3}$

a) $\xi = 1.8933 \pm 0.0001$ $\delta = 0.0001 \pm 1$ B) $\xi = 0.0033 \pm 0.0001$

 Γ) $\xi=\pm 1$ д) $\xi = \pm 3.3$

- 12. Этот метод является наиболее распространенным приемом решения систем линейных уравнений, алгоритм последовательного исключения неизвестных:
 - а) метод Гаусса;
 - б) метод Крамера;
 - в) метод обратный матриц;
 - г) аналитический метод.
- 11. Этап метода Гаусса, состоящий в последовательном нахождении значений неизвестных:
 - а) прямой ход;
 - б) обратный ход.
 - 12. Операция вычисления значения функции f(x) между узлами, называется:
 - а) интерполированием функции;
 - б) экстраполированием функции.
- 13. Формула, которая применяется для интерполирования вблизи конца таблицы значений функции (около xn) при равностоящих узлах интерполирования:
 - а) первая интерполяционная формула Ньютона;
 - б) вторая интерполяционная формула Ньютона;
 - в) интерполяционный полином Лагранжа.
 - 14. Определите название данного интерполяционного полинома:

$$\sum_{i=0}^{n} \frac{(x-x_0)(x-x_1)..(x-x_{i-1})(x-x_{i+1})..(x-x_n)}{(x_i-x_0)(x_i-x_1)..(x_i-x_{i-1})(x_i-x_{i+1})..(x_i-x_n)} y_i$$

- а) интерполяционный полином Лагранжа;
- б) интерполяционный полином Стирлинга;
- в) І интерполяционный полином Ньютона;
- Г) ІІ интерполяционный полином Ньютона.
- 15. Гладкая кривая, проходящая через заданные точки (х,у) называется
- а) касательной;
- б) кривой;
- в) сплайном.
- 16. Наиболее часто при интерполяции сплайнами применяется многочлен:
- а) второй степени;
- б) третьей степени;
- в) четвертой степени.
- 17. Какой интерполяционный многочлен соответствует таблице:

X	-2	-1	0
y	9	1	-1

Ответы: a)
$$y = 2x^2 + x - 1$$
, б) $y = 3x^2 + x - 1$; в) $y = 4x^2 - x - 1$; г) $y = 6x^2 + x - 1$.

- 18. Геометрический смысл формул прямоугольников заключается в том, что:
- а) площадь криволинейной трапеции приближенно заменяется площадью ступенчатой фигуры;
 - б) кривая функции заменяется отрезком прямой;
 - в) кривая функции заменяется частью параболы;

19. Выберите формулу метода Эйлера для вычисления приближенных значений $y(x_{i+1})$:

а)
$$y_{i+1} = y_i + h \cdot f(x_i, y_i)$$
, где $i = 0, 1, ..., n-1$

б)
$$y_{i+1} = y_0 + h \cdot f(x_i, y_i)$$
, где $i = 0, 1, ..., n-1$

в)
$$y_{i+1} = y_i + f(x_i, y_i)/h$$
, где $i = 0,1, ..., n-1$

- 20. Используя метод Эйлера, найти значения функции у, определяемой дифференциальным уравнением $y' = y^2 x$ при начальном условии у (0) = 1; шаг h = 0,1. Найти только y_1 :
 - a) 1,1;б) 1,4; в) 0,9; г) 1.2.

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ПОДПИСАНО **ФГБОУ ВО "РГРТУ"**, Круглов Сергей Александрович, **20** Заведующий кафедрой ПЭЛ

20.08.25 18:56 (MSK) Проста

Простая подпись