МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

"РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА"

КАФЕДРА ЭЛЕКТРОННЫХ ПРИБОРОВ

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

«Электронные устройства отображения информации»

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимися в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на лабораторных работах. При оценивании результатов освоения лабораторных работ применяется шкала оценки «зачтено — не зачтено». Количество лабораторных работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленного для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением теоретического зачета. Форма проведения теоретического зачета — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включаются два теоретических вопроса. В процессе подготовки к устному ответу экзаменуемый может составить в письменном виде план ответа, включающий в себя определения, выводы формул, рисунки и т.п.

Паспорт оценочных материалов по дисциплине

	Контролируемые разделы (темы) дисциплины	Код	Вид, метод,
$N_{\underline{0}}$		контролируемой	форма
Π/Π		компетенции	оценочного
		(или её части)	мероприятия
	Общие понятия и определения: изображения, его	ПК-1.1, ПК-2.1,	
1	характеристики и восприятие; УОИ и их	ПК-2.2	зачет
	параметры		
		ПК-1.1, ПК-2.1,	Результаты
		ПК-2.2	решения задач,
2	Обобщенная структура УОИ		ответы на
			тестовые
			задания, зачет
		ПК-1.1, ПК-2.1,	Результаты
		ПК-2.2	решения задач,
			отчеты по
2	Катодолюминесцентные индикаторы и УОИ		лабораторным
			работам, ответы
			на тестовые
			задания, зачет

3	Жидкокристаллические индикаторы и УОИ	ПК-1.1	зачет
4	Газоразрядные индикаторы и УОИ	ПК-1.1, ПК-2.1, ПК-2.2	Результаты решения задач, отчеты по лабораторным работам, ответы на тестовые задания, зачет
5	Электролюминесцентные индикаторы и УОИ	ПК-1.1, ПК-2.1, ПК-2.2	Результаты решения задач, отчеты по лабораторным работам, ответы на тестовые задания, зачет
6	Дисплеи с пространственным перемещением элементов	ПК-1.1, ПК-2.1, ПК-2.2	зачет
7	Устройства формирования изображений больших размеров	ПК-1.1, ПК-2.1, ПК-2.2	зачет
8	Дисплеи объемного изображения	ПК-1.1, ПК-2.1, ПК-2.2	зачет

Шкала оценки сформированности компетенций

В процессе оценки сформированности знаний, умений и навыков обучающегося по дисциплине, производимой на этапе промежуточной аттестации в форме теоретического зачета, используется оценочная шкала «зачтено – не зачтено»:

Оценка «зачтено» выставляется обучающемуся, который прочно усвоил предусмотренный программный материал; правильно, аргументировано ответил на все вопросы, с приведением примеров; показал глубокие систематизированные знания, владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данного курса, других изучаемых предметов; без ошибок выполнил практическое задание.

Обязательным условием выставленной оценки является правильная речь в быстром или умеренном темпе. Дополнительным условием получения оценки «зачтено» могут стать хорошие успехи при выполнении самостоятельной работы.

Оценка «не зачтено» выставляется обучающемуся, который не справился с 50% вопросов и заданий при прохождении тестирования, в ответах на другие вопросы допустил существенные ошибки. Не может ответить на дополнительные вопросы, предложенные преподавателем. Целостного представления о взаимосвязях элементов курса и использования предметной терминологии у обучающегося нет. Оценивается качество устной и письменной речи, как и при выставлении положительной оценки.

Типовые контрольные задания или иные материалы

Примеры контрольных вопросов к лабораторным занятиям по дисциплине

Исследование характеристик ячейки газоразрядной панели постоянного тока:

- 1. Как и почему на яркость ячейки ГИП влияет величина ограничительного сопротивления?
- 2. Какому виду разряда соответствует полученная ВАХ ГИП?
- 3. Как влияет на яркость ГИП частота следования импульсов?

- 4. Какие основные параметры ГИП характеризуют ее качество?
- 5. При каких условиях достигается максимальная яркость ГИП?
- 6. Чем ограничена величина максимально достижимой яркости ГИП?
- 7. От чего зависит светоотдача ГИП?
- 8. Что влияет на квантовый и энергетический выход ФЛФ?
- 9. От чего зависит скорость нарастания тока разряда?
- 10. За счет чего можно уменьшить реактивный ток ячейки?
- 11. Каковы основные недостатки ГИП?
- 12. Почему ГИП не находят широкого применения?
- 13. Каковы основные преимущества ГИП?
- 14. Как изменяется форма импульса напряжения на ячейке ГИП при увеличении $R_{\rm orp}$?
- 15. От чего зависит эффективность ГИП?

Электролюминесцентные индикаторы:

- 1. В чем сущность процесса предпробойной электролюминесценции?
- 2. В чем сущность процесса инжекционной электролюминесценции?
- 3. От чего зависит яркость светодиодов?
- 4. Каково угловое распределение излучения светодиодов?
- 5. От чего зависит диапазон длин волн генерируемого излучения при инжекционной электролюминесценции?
- 6. От чего зависит и какова величина эффективности светодиодов?
- 7. Какой участок ВАХ перехода наиболее предпочтителен при работе в условиях "дефицита яркости", "дефицита энергии"?
- 8. Какие материалы используются при изготовлении современных светодиодов?
- 9. Какие составляющие токов протекают через p-n переход при инжекционной электролюминесценции?
- 10. При каких условиях достигается наибольшая светоотдача сегментов?
- 11. В чем особенности конструкции индикаторов на порошковом люминофоре?
- 12. В чем особенности конструкции тонкопленочных электронных индикаторов?
- 13. Как устроены OLED?
- 14. Как работают OLED на квантовых точках?

Катодолюминесцентные индикаторы:

- 1. Чем ограничивается предельная яркость индикатора?
- 2. Что представляет собой зонная схема катодолюминофора?
- 3. От чего зависит эффективность ВЛИ?
- 4. Какими способами можно наносить катодолюминофор?
- 5. Чем ограничены предельные размеры ВЛИ?
- 6. Каковы основные преимущества ВЛИ?
- 7. Какие типы ВЛИ вы знаете?
- 8. От чего зависит долговечность ВЛИ?
- 9. В чем особенности современных кинескопов типа Trinitron?
- 10. В чем основные отличия ВВК и НВК?
- 11. Каковы основные недостатки современных ВЛИ и кинескопов?

Список типовых контрольных вопросов к зачету по дисциплине:

- 1. Общие понятия и определения. Информация, информационная модель (элементы, алфавит, виды ИМ и др.).
- 2. Знакомоделирующий, знакогенерирующий и знакосинтезирующий способы формирования элементов ИМ. Полиграммы и сегменты.

- 3. Способы формирования цветности. Координаты цветности. Методы смешения цветов. Триады и тетрады.
- 4. Кривая видности глаза человека. Особенности зрения человека.
- 5. Контрастность изображения. Инерционность зрения и закон Тальбота.
- 6. Обобщенная структура УОИ. Назначение и функции устройств, входящих в структуру. Структура современного видеомонитора.
- 7. Основные эксплуатационные параметры УОИ.
- 8. Фотометрические характеристики изображения, формируемого УОИ.
- 9. Разновидности УОИ. Типы современных индикаторов.
- 10. Катодолюминесцентные индикаторы. Особенности взаимодействия ускоренных электронов с веществом.
- 11. Высоковольтные катодолюминесцентные индикаторы. Плоские электронно-лучевые индикаторы и их разновидности.
- 12. Катодолюминесцентные индикаторы на автоэлектронной эмиссии. Низковольтные вакуумные люминесцентные индикаторы. Принцип работы. Схемы включения.
- 13. Жидкокристаллические индикаторы. Разновидности жидких кристаллов. Диэлектрическая и оптическая анизотропия. Электрооптические эффекты в ЖК.
- 14. Материалы ЖК. Конструкции ЖКИ. Способы адресации. ЖКИ с активной матрицей на тонкопленочных транзисторах.
- 15. Газоразрядные индикаторы. Преимущества газового разряда. Развитие разряда в промежутке. Фотолюминофоры и их характеристики.
- 16. Дискретные знакомоделирующие, знакосинтезирующие и шкальные газоразрядные индикаторы. Газоразрядные индикаторные панели и их разновидности. Способы управления и режимы работы ГИП постоянного тока.
- 17. ГИП переменного тока. Принцип работы и характеристики "классических" ГИП с ортогональными электродами. Перезарядная характеристика. Запись и стирание информации. Формы импульсов опорного напряжения, способы управления.
- 18. Трехэлектродные ГИП переменного тока с поверхностным разрядом. Конструкция и способы управления.
- 19. Электролюминесцентные индикаторы. Инжекционная электролюминесценция. Индикаторы на неорганических СИД. Конструкции и способы управления. Кристалтрон.
- 20. Предпробойная электролюминесценция. Порошковые и тонкоплёночные индикаторы на предпробойной электролюминесценции. Конструкции, материалы, характеристики.
- 21. OLED- индикаторы. Принцип работы, конструкции, материалы.
- 22. QLED и QLCD индикаторы. Принцип работы, конструкции, материалы.
- 23. Накальные индикаторы. Распределение энергии в спектре излучения накаленного тела. Большие экраны на основе ламп накаливания.
- 24. Электромагнитные индикаторы. Электрохромные индикаторы на неорганических и органических материалах.
- 25. Электрофоретические индикаторы. Индикаторы на микрокапсулах, EWD-индикаторы.
- 26. Индикаторы «мирасол», на фотонных чернилах, не слепнущие на солнце LCD.
- 27. Проекционные системы отображения информации. Особенности экранов для систем РИР-проекции. Виды проекционных устройств.
- 28. Жидкокристаллические проекторы с одной тройной ЖК-панелью просветного типа и с тремя простыми панелями.
- 29. Проекционные УОИ на квантоскопах. Лазерные проекционные устройства.
- 30. Проекторы с цифровой обработкой света на основе матриц микрозеркал (DLP-DMD проекторы) и на основе линейных модуляторов (MEMC).
- 31. Проекторы с модуляцией света за счет дифракции на масляной пленке. Устройство проектора «Эйдофор».
- 32. Проекционные устройства на основе кристаллов DKDP. Пикопроекторы.
- 33. Стереоскопические дисплеи.

Простая подпись

- 34. Голографические и волюметрические дисплеи.
- 35. Электронно-оптические преобразователи (ЭОП). Устройство, применение, материалы катодов.
- 36. Поколения ЭОП с волоконно-оптическими шайбами и микроканальными пластинами.

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ФГБОУ ВО "РГРТУ", РГРТУ, Серебряков Андрей Евгеньевич, и.о. заведующего кафедры ЭП

Простая подпись (МSK)

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ПОДПИСАНО **ФГБОУ ВО "РГРТУ", РГРТУ,** Круглов Сергей Александрович, **01.09.25** 19:46 (MSK) Заведующий кафедрой ПЭЛ