МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

КАФЕДРА ПРОМЫШЛЕННАЯ ЭЛЕКТРОНИКА

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

дисциплины

МИКРОВОЛНОВАЯ ТЕХНИКА

Фонд оценочных средств — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

При оценивании (определении) результатов освоения дисциплины применяется традиционная система (отлично, хорошо, удовлетворительно, неудовлетворительно).

1. Паспорт фонда оценочных средств по дисциплине

Nº π/ π	№ разде ла	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контроли- руемой компетен- ции (или её части)	Этап формирования контролируемой компетенции (или её части)	Наименование оценочного средства
1	2	Основы электродинамики. Основные уравнения электродинамики. Волновые уравнения и электромагнитные волны Распространение электромагнитных волн в неограниченных средах. Излучение. Отражение и преломление	ПК-3.1, ПК-5.2	Лекционные и практические занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельной работе, результаты решения задач, экзамен
2	3	Электродинамика микроволновых направляющих систем. Направляющие системы и направленные волны. Линии передач энергии СВЧ. Замедляющие системы	ПК-3.1, ПК-5.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельной работе, результаты решения задач, отчеты по лабораторным работам, экзамен
3	4	Электродинамика колебательных систем. Объемные резонаторы	ПК-3.1, ПК-5.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельной работе, результаты решения задач, ответы на текущие задания, отчеты по лабораторным работам, экзамен
4	5	Микроволновые устройства. Методы анализа пассивных микроволновых устройств	ПК-3.1, ПК-5.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного	Аналитический отчет по самостоятельной работе, результаты решения задач, ответы на текущие задания, отчеты по

				семестра	лабораторным работам, экзамен
5	6	Пассивные 2N- полюсники: согласованные, реактивные, резонансные нагрузки; диафрагмы, переходы, согласующие устройства, фильтры, направленные ответвители и делители мощности	ПК-3.1, ПК-5.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	Аналитический отчет по самостоятельной работе, результаты решения задач, ответы на текущие задания, отчеты по лабораторным, экзамен

2 Формы текущего контроля

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся: на занятиях, по результатам выполнения обучающимися индивидуальных заданий, проверки качества конспектов лекций и иных материалов.

Текущих заданий по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно и на лабораторных занятиях, а также экспресс — опросов и заданий по лекционным материалам и лабораторным работам. Учебные пособия, рекомендуемые для самостоятельной работы и подготовки к лабораторным занятиям обучающихся по дисциплине «Микроволновая техника», содержат необходимый теоретический материал в краткой форме и тестовые задания с возможными вариантами ответов по каждому из разделов дисциплины. Ответы на вопросы текущих заданий контролируются преподавателем.

3 Формы промежуточного контроля

Формой промежуточного контроля по дисциплине является экзамен. К экзамену допускаются обучающиеся, полностью выполнившие все виды учебной работы, предусмотренные учебным планом и настоящей программой. Форма проведения экзамена – устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины.

4 Критерии оценки компетенций обучающихся и шкалы оценивания

Оценка степени формирования указанных выше (п.п.1 и 6.1) контролируемых у обучающихся на различных этапах их формирования проводится компетенций преподавателем во время лекций, консультаций и лабораторных занятий по шкале оценок «зачтено» – «не зачтено». Текущий контроль по дисциплине проводится в виде индивидуальных заданий по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно, и на лабораторных занятиях, а также экспресс – опросов и заданий по лекционным материалам и лабораторным работам. Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах лабораторных занятий и самостоятельной работы оценивается по критериям шкалы оценок - «зачтено» – «не зачтено». материала дисциплины и достаточно высокая степень контролируемых компетенций обучающегося (эффективное и своевременное выполнение всех видов учебной работы, предусмотренных учебным планом и настоящей программой) служат основанием для допуска, обучающегося к этапу промежуточной аттестации - экзамена.

Целью проведения промежуточной аттестации (зачета) является проверка общекультурных, общепрофессиональных и профессиональных компетенций, приобретенных студентом при изучении дисциплины «Микроволновая техника».

Уровень теоретической подготовки студента определяется составом и степенью формирования приобретенных компетенций, усвоенных теоретических знаний и методов, а также умением осознанно, эффективно применять их при решении задач целенаправленного применения различных групп материалов в электронной технике.

Экзамен организуется и осуществляется, как правило, в форме собеседования. Средством, определяющим содержание собеседования студента с преподавателем, является утвержденный экзаменационный билет, содержание которого определяется ОПОП и рабочей программой предмета. Экзаменационный билет включает в себя, как правило, два вопроса относящихся к теоретическим разделам дисциплины.

Оценке на заключительной стадии зачета подвергаются устные ответы студента на вопросы экзаменационного билета, а также дополнительные вопросы экзаменатора.

Применяются следующие критерии оценивания компетенций (результатов):

- -уровень усвоения материала, предусмотренного программой;
- -умение анализировать материал, устанавливать причинно-следственные связи;
- полнота, аргументированность, убежденность ответов на вопросы;
- -качество ответа (общая композиция, логичность, убежденность, общая эрудиция);
- -использование дополнительной литературы при подготовке к этапу промежуточной аттестации.

Применяется четырехбальная шкала оценок: "отлично", "хорошо", "удовлетворительно", "неудовлетворительно", что соответствует шкале "компетенции студента полностью соответствуют требованиям $\Phi\Gamma$ OC BO", "компетенции студента в основном соответствуют требованиям $\Phi\Gamma$ OC BO", "компетенции студента в основном соответствуют требованиям $\Phi\Gamma$ OC BO".

К оценке уровня знаний и практических умений и навыков рекомендуется предъявлять следующие общие требования.

«Отлично»:

глубокие и твердые знания программного материала программы дисциплины, понимание сущности и взаимосвязи рассматриваемых явлений (процессов);

полные, четкие, логически последовательные, правильные ответы на поставленные вопросы; умение выделять главное и делать выводы.

«Хорошо»:

достаточно полные и твёрдые знания программного материала дисциплины, правильное понимание сущности и взаимосвязи рассматриваемых явлений (процессов);

последовательные, правильные, конкретные, без существенных неточностей ответы на поставленные вопросы, свободное устранение замечаний о недостаточно полном освещении отдельных положений при постановке дополнительных вопросов.

«Удовлетворительно»:

знание основного программного материала дисциплины, понимание сущности и взаимосвязи основных рассматриваемых явлений (процессов):

понимание сущности обсуждаемых вопросов, правильные, без грубых ошибок ответы на поставленные вопросы, несущественные ошибки в ответах на дополнительные вопросы.

«Неудовлетворительно»:

отсутствие знаний значительной части программного материала дисциплины; неправильный ответ хотя бы на один из вопросов, существенные и грубые ошибки в ответах на дополнительные вопросы, недопонимание сущности излагаемых вопросов, неумение применять теоретические знания при решении практических задач, отсутствие навыков в обосновании выдвигаемых предложений и принимаемых решений.

При двух вопросах в билете общая оценка выставляется следующим образом: «отлично», если все оценки «отлично» или одна из них «хорошо»; «хорошо», если не более одной оценки

«удовлетворительно»; «удовлетворительно», если две оценки «удовлетворительно»; «неудовлетворительно», если одна оценка «неудовлетворительно», а вторая не выше чем «удовлетворительно» или две оценки «неудовлетворительно».

5 Типовые контрольные вопросы по дисциплине «Микроволновая техника»

- 1. Основные этапы развития научных представлений об электромагнитном поле. Законы и опыты Ш.Кулона, Г.Эрстеда, Ампера, М.Фарадея.
- 2. Место диапазона СВЧ в спектре электромагнитных колебаний. Физические свойства колебаний СВЧ диапазона и их применение.
- 3. Основные величины, характеризующие электрические и магнитные поля. Материальные уравнения среды.
- 4. Система уравнений электродинамики уравнений Максвелла в интегральной и дифференциальной форме.
- 5. Граничные условия для вектора электрического поля.
- 6. Граничные условия для вектора магнитного поля.
- 7. Классификация электромагнитных явлений. Система уравнений электростатики, магнитостатики, уравнения переменных электромагнитных полей.
- 8. Электростатическое поле. Электростатический потенциал: определение, его связь с напряженностью электрического поля. Уравнения Пуассона и Лапласа.
- 9. Переменные электромагнитные поля. Уравнения Даламбера для векторов напряженности электрического и магнитного поля. Волновые уравнения.
- 10. Уравнения электродинамики для гармонических во времени полей в комплексной форме. Комплексные параметры среды. Уравнения Гельмгольца.
- 11. Уравнение баланса энергии электромагнитного поля.
- 12. Решение волнового уравнения для однородной неограниченной среды. Волновой характер электромагнитного поля. Понятие плоской электромагнитной волны.
- 13. Основные свойства плоских однородных электромагнитных волн. Бегущие и стоячие волны. Фазовая и групповая скорость волны.
- 14. Поляризация электромагнитных волн. Линейная, круговая и эллиптическая поляризация волн.
- 15. Распространение плоской электромагнитной волны в диэлектрике без потерь и в диэлектрике с потерями.
- 16. Падение плоской электромагнитной волны на плоскую границу двух сред. Законы Снеллиуса, полное внутренние отражение.
- 17. Падение плоской волны на плоскую границу раздела с идеальным и реальным проводником. Поверхностный эффект, глубина проникновения поля в металл, поверхностное сопротивление.
- 18. Распространение и фазовая скорость волны в направлении, параллельном проводящей плоскости. Направленные волны.
- 19. Решение волнового уравнения для произвольной передающей линии.
- 20. Общие свойства волн в линиях передач. Основные характеристики волн: постоянная распространения, фазовая и групповая скорость, понятие критической длины волны.
- 21. Дисперсия волн в линиях передачи. Признаки существования дисперсии. Зависимости $\ \lambda_{s}$,
- v_{ϕ} , $~v_{\it 2p}$ от частоты или длины волны в линиях передачи.
- 22. Типы волн в линиях передач. Связь между продольными и поперечными составляющими полей.
- 23. Волны типа H в прямоугольном волноводе. Критические длины волн и структура поля волн типа H_{mn} .
- 24. Волны типа E. Критические длины волн и структура поля волн типа E_{mn} .

- 25. Диаграмма типов волн в прямоугольном волноводе.
- 26. Круглый волновод. Решение волнового уравнения в цилиндрической системе координат.
- 27. Волны типа E в круглом волноводе. Критические длины волн и структура поля волн типа E_{mn} .
- 28. Волны типа H в круглом волноводе. Критические длины волн и структура поля волн типа H_{mn} .
- 29. Основной тип волны в коаксиальной линии. Волновое сопротивление на волне Т-типа.
- 30. Волноводные типы волн в коаксиальной линии.
- 31. Регулярные волноводы в режиме отсечки (запредельный режим). Аттенюаторы предельного типа.
- 32. Потери мощности в линиях передач: определение постоянной затухания для волновода произвольного сечения. Зависимость постоянной затухания от частоты.
- 33. Микрополосковая линия. Основные параметры МПЛ: предельная частота, эффективная диэлектрическая проницаемость, волновое сопротивление, коэффициент затухания.
- 34. Диэлектрические волноводы. Световоды.
- 35. Свойства намагниченного феррита на СВЧ.
- 36. Ферромагнитный резонанс. Вентиль на невзаимном резонансном поглощении.
- 37. Вентиль, основанный на эффекте Фарадея. Циркулятор.
- 38. Свободные колебания объемных резонаторов, понятие о собственных волновых числах объемных резонаторов.
- 39. Основные параметры объемных резонаторов. Собственная, внешняя, нагруженная добротность.
- 40. Параллельное активное сопротивление резонатора при резонансе. Характеристическое сопротивление.
- 41. Критерии эквивалентности объемного резонатора колебательному контуру.
- 42. Резонаторы из отрезков коаксиальной и полосковой линий. Полуволновый и четвертьволновый резонаторы.
- 43. Волноводные резонаторы. Условие резонанса.
- 44. Резонаторы из отрезков прямоугольного волновода. Виды колебаний H_{mnp} . Определение резонансных длин волн. Структура поля (на примере H_{101}).
- 45. Виды колебаний E_{mnp} в призматическом резонаторе: структура поля (на примере E_{111}).
- 46. Виды колебаний E_{mnp} в цилиндрическом резонаторе.
- 47. Виды колебаний H_{mnp} в цилиндрическом резонаторе.
- 48. Квазистатические резонаторы. Расчет собственной длины волны тороидального резонатора.
- 49. Резонаторы в виде отрезка линии (коаксиальной, радиальной), нагруженной на емкость.
- 50. Способы возбуждения волноводов и резонаторов.
- 51. Открытые резонаторы, волноводные, зеркальные.
- 52. Кольцевые резонаторы бегущей волны.
- 53. Замедляющие системы (3C). Общие свойства. Структура поля в поперечном сечении 3C с плоской и осевой симметрией.
- 54. Спиральная 3С: дисперсионная характеристика, сопротивление связи.
- 55. Неоднородные 3С. Понятие о пространственных гармониках, их параметры и свойства.
- 56. Применение метода эквивалентных схем для анализа 3С. Дисперсионные характеристики неоднородных 3С. Система типа цепочки связанных резонаторов.
- 57. Кольцевые замедляющие системы. Дисперсионные характеристики замкнутых 3С.
- 58. Эквивалентное представление линий передачи. Падающая и отраженная волны напряжения, эквивалентное сопротивление, входное сопротивление, диаграмма полных сопротивлений (проводимостей).
- 59. Матричный метод анализа СВЧ устройств. Пассивные 2N-полюсники. Матрица рассеяния, свойства матрицы рассеяния пассивного 2N-полюсника без потерь.
- 60. Пассивные двухполюсники. Согласованные нагрузки: волноводные, коаксиальная, для МПЛ.

- 61. Реактивные нагрузки. Короткозамыкающие поршни.
- 62. Пассивные четырехполюсники. Коаксиально-волноводный переход, волноводно-микрополосковый переход.
- 63. Реактивные диафрагмы, резонансные окна.
- 64. Поглощающий регулируемый аттенюатор. Поляризационный аттенюатор. Фазовращатели.
- 65. Согласующие устройства СВЧ. Согласование с помощью реактивного шлейфа.
- 66. Четвертьволновый согласующий трансформатор.
- 67. Трансформатор сопротивлений с двумя диэлектрическими вставками.
- 68. Широкополосные согласующие устройства. Многоступенчатый трансформатор сопротивлений (переход), максимально-плоская и чебышевская частотные характеристики.
- 69. Фильтры СВЧ. Типы фильтров. Фильтры на объемных резонаторах с непосредственными связями и с четвертьволновыми связями. Низкочастотные прототипы.
- 70. Полосно-пропускающие фильтры на связанных МПЛ. Прототип.
- 71. ППФ на одиночных МПЛ. Полосно-заграждающий фильтр, фильтр низких частот.
- 72. Волноводные Н и Е тройники.
- 73. Пассивные восьмиполюсники. Волноводный щелевой мост.
- 74. Кольцевой мост на МПЛ длиной 3/2.
- 75. Направленные ответвители со слабой связью. Многодырочный НО.
- 76. Связь резонатора с внешними цепями. Эквивалентная схема резонатора с линией, параметры резонатора, коэффициент связи резонатора с линией. Определение оптимальной связи при передаче энергии в резонатор и из резонатора в нагрузку.
- 77. Согласование резонансной нагрузки в полосе частот.
- 78. Мостовое соединение типа двойной волноводный тройник.

6 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

В качестве методических материалов, определяющих процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций у обучающихся, используются перечни контрольных вопросов, приведенных в методических указаниях к лабораторным и самостоятельным занятиям по дисциплине «Микроволновая техника», приведенные в п.6.4 критерии оценки компетенций обучающихся и оценочные средства (п.6.1).

Кроме того, в лаборатории, где проводятся лабораторные работы на первом занятии студентам подробно излагаются и в дальнейшем рекомендуются для постоянного применения специальные методические материалы, регламентирующие порядок проведения лабораторных работ, оформления и защиты отчетов, порядок и критерии оценки письменных и устных отчетов обучающихся по дисциплине (или ее части). К выполнению лабораторной работы не допускаются студенты, не оформившие отчеты по лабораторным работам или не защитившие отчетов по двум работам.

Методические требования к оформлению отчетов по лабораторным работам

Отчет по лабораторной работе должен содержать следующие элементы:

- номер, название и цель работы;
- чертеж функциональной схемы установки, выполненный карандашом по линейке с соблюдением требований ЕСКД;
- основные расчетные соотношения;
- таблицы результатов экспериментов, выполненные карандашом по линейке;
- графики экспериментальных зависимостей, полученных при выполнении лабораторной работы;
- выводы и анализ полученных экспериментальных зависимостей.

При выполнении лабораторной работы каждому студенту необходимо иметь полностью оформленный отчет по ранее выполненной работе и отчет по выполняемой работе, содержащий все перечисленные элементы (за исключением экспериментальных данных в таблице, графиков, выводов).

Методические требования к структуре аналитического отчета по самостоятельной работе:

- 1). титульный лист;
- 2). часть I «Аналитическая часть» анализ раздела индивидуального задания по дисциплине, формулировка актуальности темы, цели и задач разработки или исследования объекта и предмета разработки или исследования, оценка современного состояния изучаемой проблемы;
- 3). часть II «Основная часть» результаты выполнения основной части раздела индивидуального задания по дисциплине (обзор научно-методических информационных источников современных научных статей и монографий по теме, выявление вопросов, требующих углубленного изучения; формирование и обоснование собственной точки зрения на рассматриваемые проблемы и возможные пути их разрешения; необходимые расчеты, моделирование и другие задания, предусмотренные темой самостоятельной работы. Материал не должен иметь только компилятивный характер, но обладать новизной, практической значимостью, отражать точку зрения автора на изучаемые проблемы и результаты проделанной работы.
- 4). часть III «Заключение» заключение и выводы по результатам выполненной работы;
 - 5) список использованных научных и научно-методических источников;
 - 6) приложения (при необходимости).

Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах лабораторных занятий (после каждой лабораторной работы) и самостоятельной работы (на консультациях) оценивается по критериям шкалы оценок - «зачтено» – «не зачтено».

Оценки "зачтено" заслуживает обучающийся, обнаруживший знания основного учебного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, знакомый с основной литературой, рекомендованной программой, справляющийся с выполнением графика и содержания заданий, предусмотренных учебным планом и настоящей программой.

Оценка "не зачтено" выставляется обучающемуся, обнаружившему пробелы в знаниях основного учебного материала, допустившему принципиальные ошибки в выполнении заданий, предусмотренных учебным планом и настоящей программой.

1 Перечень компетенций с указанием этапов их формирования

В соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки магистров 11.04.04 «Электроника и наноэлектроника» при освоении дисциплины «Микроволновая техника» формируются следующие компетенции: ПК-3.1, ПК-5.2.

Указанные компетенции формируются в соответствии со следующими этапами:

- 1) формирование и развитие теоретических знаний, предусмотренных указанными компетенциями (лекционные и лабораторные занятия, самостоятельная работа студентов);
- 2) приобретение и развитие практических умений предусмотренных компетенциями (лабораторные работы, самостоятельная работа студентов);
- 3) закрепление теоретических знаний, умений и практических навыков, предусмотренных компетенциями, в ходе выполнения конкретных заданий на лабораторных работах и их защитах, ответов на тестовые задания (текущий контроль), а также в процессе подготовки и сдачи отчетов по самостоятельной работе и экзамена (промежуточный контроль).

2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Сформированность каждой компетенции в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

При достаточном качестве освоения более 80% приведенных знаний, умений и навыков преподаватель оценивает освоение данной компетенции в рамках настоящей дисциплины на эталонном уровне, при освоении более 60% приведенных знаний, умений и навыков — на продвинутом, при освоении более 40% приведенных знаний умений и навыков — на пороговом уровне. При освоении менее 40% приведенных знаний, умений и навыков компетенция в рамках настоящей дисциплины считается неосвоенной.

Уровень сформированности каждой компетенции на различных этапах ее формирования в процессе освоения данной дисциплины оценивается в ходе текущего контроля успеваемости и представлено различными видами оценочных средств.

Оценке сформированности в рамках данной дисциплины подлежат перечисленные ниже компетенции.

- ПК-3.1- Проводит предварительный расчет характеристик приборов и устройств электроники и наноэлектроники различного функционального назначения на основе выбранных технических решений.
- ПК-5.2 Проводит компьютерное моделирование функционирования микроволновых приборов и устройств на основе физических процессов и явлений, лежащих в основе их работы.

Преподавателем оценивается содержательная сторона и качество материалов, приведенных в отчетах студента по самостоятельной и лабораторным работам. Кроме того, преподавателем учитываются ответы студента на вопросы по соответствующим видам занятий при текущем контроле:

- контрольные опросы и задания;
- допуски и защиты лабораторных работ;

Принимается во внимание знания обучающимися:

- основные законы расчета электромагнитных полей, а также теоретические и практические основы проектирования радиотехнических систем специального назначения (ПК-8);
- основные методы проектирования микроволновой техники и систематизацию результатов в соответствии с поставленной задачей (ПК-3.1, ПК-5.2).

Умение:

- применять на практике основные приемы и навыки применения методов проектирования микроволновой техники (ПК-3.1, ПК-5.2);
- решать задачи в области микроволновой техники связанные с разработкой и ведением проектно-конструкторской документации (ПК-3.1, ПК-5.2).

Владение:

- математическими методами в электродинамике и навыками экспериментального исследования параметров и характеристик микроволновой техники (ПК-3.1, ПК-5.2).
- навыками в области проектирования конструкторской документации в соответствии с методическими и нормативными требованиями для микроволновой техники (ПК-3.1, ПК-5.2).

Критерии оценивания уровня сформированности компетенций ПК-3.1, ПК-5.2 в процессе выполнения и защиты отчетов по самостоятельной и лабораторным работам:

- 41%-60% правильных ответов соответствует пороговому уровню сформированности компетенции на данном этапе ее формирования;
- 61%-80% правильных ответов соответствует продвинутому уровню сформированности компетенции на данном этапе ее формирования;
- 81%-100% правильных ответов соответствует эталонному уровню сформированности компетенции на данном этапе ее формирования.

Сформированность уровня компетенций не ниже порогового является основанием для допуска обучающегося к промежуточной аттестации по данной дисциплине.

Формой промежуточной аттестации по данной дисциплине является экзамен, оцениваемый по принятой в ФГБОУ ВО «РГРТУ» четырехбалльной системе: «неудовлетворительно», «удовлетворительно», «хорошо» и «отлично».

Критерии оценивания промежуточной аттестации представлены в таблице 1.

Таблица 1 - Критерии оценивания промежуточной аттестации

	L - Критерии оценивания промежуточной аттестации		
Шкала оценивания	Критерии оценивания		
«отлично»	студент должен: продемонстрировать глубокое и прочное		
	усвоение знаний материала; исчерпывающе, последовательно,		
	грамотно и логически стройно изложить теоретический		
	материал; правильно формулировать определения; уметь сделать		
	выводы по излагаемому материалу; безупречно ответить не		
	только на вопросы билета, но и на дополнительные вопросы в		
	рамках рабочей программы дисциплины; продемонстрировать		
	умение правильно выполнять практические задания,		
	предусмотренные программой.		
«хорошо»	студент должен: продемонстрировать достаточно полное знание		
•	материала; продемонстрировать знание основных теоретических		
	понятий; достаточно последовательно, грамотно и логически		
	стройно излагать материал; уметь сделать достаточно		
	обоснованные выводы по излагаемому материалу; ответить на		
	все вопросы билета; продемонстрировать умение правильно		
	выполнять практические задания, предусмотренные программой,		
	при этом возможно допустить непринципиальные ошибки.		
WHOD HOTDODUTO HI HOW			
«удовлетворительно»	студент должен: продемонстрировать общее знание изучаемого материала; знать основную рекомендуемую программой		
	материала; знать основную рекомендуемую программой дисциплины учебную литературу; уметь строить ответ в		
	соответствии со структурой излагаемого вопроса; показать общее		
	владение понятийным аппаратом дисциплины; уметь устранить		
	допущенные погрешности в ответе на теоретические вопросы и/или при выполнении практических заданий под руководством		
	преподавателя, либо (при неправильном выполнении практического задания) по указанию преподавателя выполнить		
	другие практические задания того же раздела дисциплины.		
	другие практические задания того же раздела дисциплины.		
"HONTOD TOTOODUTOTE UO"	старится в слупае периания знапительной пасти программного		
«неудовлетворительно»	ставится в случае: незнания значительной части программного		
«неудовлетворительно»	материала; не владения понятийным аппаратом дисциплины;		
«неудовлетворительно»	материала; не владения понятийным аппаратом дисциплины; существенных ошибок при изложении учебного материала;		
«неудовлетворительно»	материала; не владения понятийным аппаратом дисциплины; существенных ошибок при изложении учебного материала; неумения строить ответ в соответствии со структурой		
«неудовлетворительно»	материала; не владения понятийным аппаратом дисциплины; существенных ошибок при изложении учебного материала; неумения строить ответ в соответствии со структурой излагаемого вопроса; неумения делать выводы по излагаемому		
«неудовлетворительно»	материала; не владения понятийным аппаратом дисциплины; существенных ошибок при изложении учебного материала; неумения строить ответ в соответствии со структурой излагаемого вопроса; неумения делать выводы по излагаемому материалу. Как правило, оценка «неудовлетворительно» ставится		
«неудовлетворительно»	материала; не владения понятийным аппаратом дисциплины; существенных ошибок при изложении учебного материала; неумения строить ответ в соответствии со структурой излагаемого вопроса; неумения делать выводы по излагаемому материалу. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение по		
«неудовлетворительно»	материала; не владения понятийным аппаратом дисциплины; существенных ошибок при изложении учебного материала; неумения строить ответ в соответствии со структурой излагаемого вопроса; неумения делать выводы по излагаемому материалу. Как правило, оценка «неудовлетворительно» ставится		

компетенций, закрепленных за данной дисциплиной). Оценка «неудовлетворительно» выставляется также, если студент после начала экзамена отказался его сдавать или нарушил правила сдачи экзамена (списывал, подсказывал, обманом пытался получить более высокую оценку и т.д.).

3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Типовые задания в рамках самостоятельной работы студентов для укрепления теоретических знаний, развития умений и навыков, предусмотренных компетенциями, закрепленными за дисциплиной.

- 1. Молекулярная оптика.
- 2. Электрооптика (Эффект Керра).
- 3. Магнитооптика(Эффекты Фарадея и Котонна-Мутона).
- 4. Световоды.
- 5. Возбуждение электромагнитных волн в направляющих системах.
- 6. Разложение вынужденного поля по собственным волнам.
- 7. Ортогональность и полнота системы собственных волн.
- 8. Кольцевые замедляющие системы, условия резонанса и виды колебаний кольцевых замедляющих систем, дисперсионные характеристики, особенности кольцевых замедляющих систем со связками.
 - 9. Резонаторы с квазисосредоточенными параметрами.
 - 10. Кольцевые резонаторы бегущей волны. Открытые резонаторы.
 - 11. Восмиполюсники.
 - 12. Матрица рассеивания согласованного восмиполюсника.
 - 13. Типы направленности.
- 14. Параметры восмиполюсника, используемого в качестве направленного ответвителя (НО).
 - 15.Волноводный НО со слабой связью: устройство: принцип действия, параметры.
 - 16. Направленные ответвители с сильной (мостовые соединения).
- 17. Волноводный щелевой мост: устройство, принцип действия, расчет основных размеров.
- 18. Мостовые соединения, выполненные на основе МПЛ (кольцевой мост и двухшлейфный ответвитель).
- 19. Принцип действия, расчет основных размеров. Использование в качестве делителей и сумматоров мощности СВЧ колебаний.

Примеры **контрольных вопросов** к лабораторным работам, выполняемым для приобретения и развития знаний и практических умений, предусмотренных компетенциями.

- 1. Измерение параметров микрополосковой линии.
 - 1. Конструкция МПЛ и требования, предъявляемые к материалам для их изготовления. Основные размеры линии.
 - 2. Типы волн в МПЛ, структура поля основной волны. Причины ограничения рабочего диапазона частот.
 - 3. Волновое сопротивление МПЛ, причины ограничения его величины.
 - 4. Эффективная диэлектрическая проницаемость МПЛ.
 - 5. Методика экспериментального определения величины $\varepsilon_{9\phi}$ на резонансных отрезках МПЛ.
 - 6. Основные причины потерь энергии в МПЛ и способы их уменьшения.

- 7. Методика экспериментального определения постоянной затухания МПЛ, используемая в работе.
- 8. Связанные МПЛ: конструкция и назначение.
- 9. Структура поля четного и нечетного видов колебаний.
- 10. Эффективная диэлектрическая проницаемость связанных линий; методика экспериментального определения величины $\varepsilon_{9\phi}$ связанных МПЛ, используемая в работе.
 - 2. Исследование замедляющей системы типа цепочки связанных резонаторов.
- 1. Дайте определения фазовой и групповой скорости.
- 2. В каких случаях $v_{\phi} = v_{zp}$?
- 3. Что такое дисперсия? Замедляющие системы с положительной и отрицательной дисперсией. Нормальная и аномальная дисперсии.
- 4. На чем основано деление замедляющих систем на моногармонические и полигармонические? Приведите примеры таких систем.
- 5. Понятие о пространственных гармониках. Амплитуды, фазовые и групповые скорости гармоник.
- 6. Дисперсионные характеристики при нормальной и аномальной дисперсии нулевой гармоники. Как определить υ_{zp} по дисперсионной характеристике?
- 7. Дисперсионные характеристики 3С типа цепочки связанных резонаторов. Возможные полосы пропускания таких систем.
- 8. Резонансный метод измерения дисперсионных характеристик и сопротивления связи 3С, его достоинства и недостатки.
- 9. Какие виды колебаний могут возбуждаться в закороченном с двух сторон отрезке 3С? В отрезке 3С, замкнутом в кольцо?
- 10. Какие факторы определяют погрешность измерения дисперсионной характеристики и сопротивления связи?
- 11. Суть измерения сопротивления связи методом малых возмущений.
- 3. Экспериментальное определение S-параметров пассивного обратимого четырехполюсника.
 - 1. Что такое матрица рассеяния?
 - 2. Физический смысл элементов матрицы рассеяния?
 - 3. Преимущества использования $\begin{bmatrix} \dot{s} \end{bmatrix}$ для описания многополюсников перед матрицами $\begin{bmatrix} \dot{y} \end{bmatrix}$ и $\begin{bmatrix} \dot{z} \end{bmatrix}$?
 - 4. Матрица $\left[\dot{s}\right]$ обратимого симметричного четырехполюсника?
 - 5. Каким способом можно осуществить непосредственное измерение элементов $[\dot{s}]$ СВЧ четырехполюсника?
 - 6. Методика определения неполной системы *s* параметров, используемая в работе, ее достоинства и ограничения?
 - 7. Принцип действия диодного волноводного модулятора?
 - 8. Каким образом можно определить величину потерь энергии в модуляторе по найденным значениям *s* параметров?
- 4. Экспериментальное определение добротности объемного резонатора с одним элементом связи
 - 1. Что характеризуют понятия собственная, внешняя и нагруженная добротности резонатора?
 - 2. Что такое коэффициент связи резонатора с внешней цепью?
 - 3. Какие факторы определяют величину собственной добротности резонатора?
 - 4. Что такое плоскость эквивалентного представления резонатора и как экспериментально определить ее положение в волноводе, нагруженном резонатором?

- 5. Как измерить величину коэффициента связи?
- 6. Какие способы измерения добротности резонаторов вы знаете?
- 7. В чем достоинства добротности методом K_{cmU} и чем определяются границы его применения?
- 8. Каковы основные причины погрешностей при измерении добротности резонаторов методом K_{cmU} ?

Примеры контрольных вопросов к практическим занятиям по дисциплине:

- 1. Расчет основных параметров элементов Гюйгенса
- 1. Ознакомление с выводом расчетных соотношений для компонент векторов напряженности электрического и магнитного полей элемента Гюйгенса, а также системы из данных элементов.
- 2. Вычисление параметров отверстия, обеспечивающих заданную ширину диаграммы направленности в E- и H- плоскостях.
- 3. Построение общего вида диаграммы направленности системы элементов Гюйгенса, а также ее сечений E- и H- плоскостями.
- 4. Проведение сравнительного анализа полученных результатов исследования и формулировка выводов.
- 2. Расчет участка взаимодействия ЛБВ малой мощности. Расчет геометрии и выходных данных ЛБВ средней и большой мощности
 - 1. Расчет геометрических размеров спиральной линии замедления.
 - 2. Расчет рабочего тока.
 - 3. Расчет длины спиральной замедляющей системы.
 - 4. Проверка усиления ЛБВ на средней и граничной частотах.
 - 5. Расчёт сосредоточенного поглотителя ЛБВ.
 - 6. Расчёт коллектора.
 - 7. Расчёт пушки.
 - 3. Расчет и проектирование тороидального резонатора миллиметрового диапазона
 - 1. Расчет геометрических размеров тороидальльного резонатора на частоту 95 ГГц.
 - 2. Подбор электрических параметров тороидальльного резонатора на частоту 95 ГГц.
- 3. Моделирование тороидальльного резонатора с учетом электромагнитных полей на частоту 95 $\Gamma\Gamma$ ц.
 - 4. Конструирование тороидальльного резонатора.
 - 4. Расчет S параметров пассивного обратимого четырехполюсника
 - 1.Определить А-параметры четырехполюсника.
 - 2. Выполнить проверку выполнения основного соотношения между ними.
- 3. Определить вторичные параметры четырехполюсника (входное и выходное характеристические сопротивления и постоянную передачи четырёхполюсника).
- 4. Определить входное, выходное характеристические сопротивления и постоянную передачи двух каскадно-соединенных согласованных четырехполюсников.
- 5. Вывести формулы амплитудно-частотной (АЧХ) и фазо-частотной (ФЧХ) характеристик.
 - 6. Используя MATHCAD получить графики AЧX и ФЧX.
- 7. Определить переходную и импульсную характеристики четырехполюсника, пользуясь классическим и операторным методами.
 - 5. Расчеты параметров коаксиальной линии
 - 1. Производится выбор размеров и материала проводника.

- 2. Определение скорости, частоты распространения электромагнитной волны по коаксиальной линии.
 - 3. Определяем внутренние параметры коаксиальной линии.
- 4. Рассчитываем коэффициент распространения волны, волновое число коэффициент затухания, коэффициент фазы и структуру электромагнитного поля.

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ПОДПИСАНО **ФГБОУ ВО "РГРТУ", РГРТУ,** Круглов Сергей Александрович, Заведующий кафедрой ПЭЛ

01.09.25 19:50 (MSK)

Простая подпись