МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени В.Ф. УТКИНА»

Кафедра «Общая и экспериментальная физика»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДИСЦИПЛИНЫ

«ФИЗИКА (Факультатив)»

Направление подготовки бакалавров
11.03.02 Инфокоммуникационные технологии и системы связи

Квалификация (степень) выпускника – бакалавр

Формы обучения – очная

1 ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы — это совокупность учебно-методических материалов (практических заданий, описаний форм и процедур проверки), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций обучающихся целям и требованиям основной образовательной программы в ходе проведения промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности компетенций, закрепленных за дисциплиной.

Контроль знаний проводится в форме промежуточной аттестации. Промежуточная аттестация проводится в форме зачета в первом и втором семестрах.

Форма проведения зачета — устный ответ по теоретическим вопросам, сформулированным с учетом содержания учебной дисциплины.

2 ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Сформированность каждой компетенции (или ее части) в рамках освоения данной дисциплины оценивается в процессе проведения зачета в форме оценки «Зачтено» или «Не зачтено».

Оценка «зачтено» выставляется студенту, который прочно усвоил предусмотренный программный материал; правильно, аргументировано ответил на все вопросы, с приведением примеров; показал глубокие систематизированные знания, владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данного курса, других изучаемых предметов.

Оценка «не зачтено» выставляется студенту, который не справился с 50% вопросов и заданий, в ответах на другие вопросы допустил существенные ошибки. Не может ответить на дополнительные вопросы, предложенные преподавателем. Целостного представления о взаимосвязях, компонентах, этапах развития культуры у студента нет. Оценивается качество устной и письменной речи, как и при выставлении положительной оценки.

3 ПАСПОРТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ ПО ДИСЦИПЛИНЕ

No	Контролируемые разделы	Код контролируемой	Вид, метод, форма
Π/Π	(темы) дисциплины	компетенции (или её	оценочного
		части)	мероприятия
1	2	3	4
1	Отдельные вопросы механики, молекулярной физики и термодинамики		
1.1	Оценка погрешности	ОПК-1	Зачет
	результатов измерений	ОПК-2	Зачет
1.2	Измерительные приборы,	ОПК-1	Зачет
	используемые в физическом	ОПК-2	
	эксперименте		
1.3	Экспериментальное	ОПК-1	Зачет
	определение ускорения	ОПК-2	
	свободного падения		
1.4	Экспериментальное	ОПК-1	Зачет
	определение коэффициентов	ОПК-2	
	трения		
1.5	Экспериментальная проверка	ОПК-1	Зачет
	законов динамики	ОПК-2	

	поступательного движения		
1.6	Экспериментальное	ОПК-1	Зачет
1.0	исследование упругих свойств	ОПК-2	34.161
	твердого тела	91111 2	
1.7	Экспериментальное изучение	ОПК-1	Зачет
1.,	законов сохранения энергии и	ОПК-2	34 161
	импульса		
1.8	Экспериментальное	ОПК-1	Зачет
1.0	определение моментов	ОПК-2	3u 101
	инерции твердого тела		
	методом маятника Максвелла		
1.9	Экспериментальное	ОПК-1	Зачет
1.7	определение моментов	ОПК-2	3a 101
	инерции твердого тела	OTIK 2	
	методом трифилярного		
1.10	Подвеса	ОПК-1	Зачет
1.10	Экспериментальное исследование колебательных	ОПК-1	Janci
		OHK-2	
	процессов твредых тел (метод крутильных колебаний)		
1 1 1	7	OTIV 1	7
1.11	Экспериментальное	ОПК-1	Зачет
	исследование основного	ОПК-2	
	закона динамики		
	вращательного движения	0.7774.4	
1.12	Экспериментальное изучение	ОПК-1	Зачет
	закона сохранения момента	ОПК-2	
	импульса		
1.13	Экспериментальное	ОПК-1	Зачет
	исследование явлений	ОПК-2	
	переноса		
1.14	Экспериментальное	ОПК-1	Зачет
	определение параметров	ОПК-2	
	термодинамических систем		
	(эффективного диаметра,		
	средней длины свободного		
	пробега и пр.)		
1.15	Адиабатный процесс и его	ОПК-1	Зачет
	экспериментальное	ОПК-2	
	исследование		
1.16	Изучение фазовых переходов	ОПК-1	Зачет
		ОПК-2	
2	Отдельные вопросы электромаг	нетизма	
2.1	Электроизмерительные	ОПК-1	Зачет
	приборы, оценка	ОПК-2	
	погрешностей результатов		
	измерений		
2.2	Экспериментальное	ОПК-1	Зачет
	исследование	ОПК-2	
	электростатического поля,		
	создаваемого электродами		
	различной формы		
2.3	Экспериментальное	ОПК-1	Зачет

	определение электроемкости	ОПК-2	
	конденсаторов		
2.4	Экспериментальное	ОПК-1	Зачет
	определение электрического	ОПК-2	
	сопротивления проводников		
2.5	Изучения процессов	ОПК-1	Зачет
	протекания	ОПК-2	
	электрического тока в вакууме		
2.6	Экспериментальное	ОПК-1	Зачет
	исследование параметров	ОПК-2	
	сегнетоэлектрика		
2.7	Экспериментальное	ОПК-1	Зачет
	исследование сложения	ОПК-2	
	электрических колебаний		
2.8	Экспериментальное изучение	ОПК-1	Зачет
	магнитного поля соленоида	ОПК-2	
2.9	Экспериментальное изучение	ОПК-1	Зачет
	движения заряженных частиц	ОПК-2	
	в вакууме		
2.10	Изучение магнитного поля	ОПК-1	Зачет
	Земли	ОПК-2	
2.11	Экспериментальное	ОПК-1	Зачет
	исследование явления	ОПК-2	
	гистерезиса в ферромагнетике		
2.12	Экспериментальное	ОПК-1	Зачет
	определение магнитной	ОПК-2	
	проницаемости		
	ферромагнетика		
2.13	Экспериментальное	ОПК-1	Зачет
	определение точки Кюри	ОПК-2	
	ферромагнетика		
2.14	Экспериментальное изучение	ОПК-1	Зачет
	явления электромагнитной	ОПК-2	
	индукции		
2.15	Экспериментальное изучение	ОПК-1	Зачет
	вынужденных	ОПК-2	
	электромагнитных колебаний		
2.16	Экспериментальное изучение	ОПК-1	Зачет
	затухающих	ОПК-2	
	электромагнитных колебаний		

4 ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ И ИНЫЕ МАТЕРИАЛЫ

4.1. Промежуточная аттестация в форме зачета (1 семестр)

Код компетенции	Результаты освоения основной образовательной программы Содержание компетенций	
ОПК-1	Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности	
ОПК-2	Способен самостоятельно проводить экспериментальные	

исследования и использовать основные приемы обработки и представления полученных данных

Типовые теоретические вопросы к зачету по дисциплине

- 1. Что такое погрешность, абсолютная и относительная? Что такое систематическая и случайная погрешности?
- 2. Что такое доверительная вероятность и доверительный интервал? Зачем нужен коэффициент Стьюдента?
- 3. Объяснить метод определения момента инерции с помощью подвеса.
- 4. Что называется гироскопом? Каковы его основные свойства? Где и для какой цели находят применение гироскопы?
- 5. Что называется прецессией гироскопа? Как изменится скорость прецессии с изменением угловой скорости; с изменением момента сил внешних сил?
- 6. Какие силы действуют на подвижные тела в установке Обербека? Как изменяется сила натяжения нити при переходе от измерений с малым шкивом к измерениям с большим шкивом?
- 7. Объяснить молекулярно-кинетический механизм явления внутреннего трения.
- 8. Сформулируйте закон Амонтона-Кулона. Как можно объяснить возникновение трения качения. Запишите формулу для силы трения качения.
- 9. В чем заключается проверка основного закона динамики поступательного движения? Какие силы действуют на движущиеся тела в машине Атвуда?
- 10. Что представляет собой маятник Максвелла?
- 11. Какое взаимодействие тел называется ударом? Какие существуют виды ударного взаимодействия? Сформулируйте законы сохранения импульса и энергии и примените их к ударам различного вида.
- 12. Рассчитайте скорости тел, испытавших прямой центральный удар при абсолютно упругом взаимодействии.
- 13. Перечислите виды деформаций. Какие из них являются однородными? Назовите характеристики, описывающие деформацию тела.
- 14. Сформулировать закон Гука для различных вводов деформации. При каких условиях он справедлив?
- 15. Что называется процессом кристаллизации вещества? Какие условия нужны для возникновения этого процесса?
- 16. Сформулируйте второе начало термодинамики. Объясните, что называется энтропией. Каковы свойства этой функции состояния термодинамической системы?
- 17. Что представляет собой диаграмма равновесного состояния вещества? Чем определяется тройная точка на этой диаграмме?
- 18. Дайте определения следующих понятий: средняя длина пробега молекулы, эффективный диаметр молекулы, эффективное сечение столкновения, коэффициент вязкости, число Рейнольдса.
- 19. Перечислите процессы переноса, возникающие в термодинамически неравновесных системах, дайте их краткую характеристику и запишите законы, описывающие эти явления.
- 20. Какие процессы вносят погрешности в определение коэффициента теплопроводности.

4.2. Промежуточная аттестация в форме зачета (2 семестр)

Код Результаты освоения основной образовательной программы	
--	--

компетенции	Содержание компетенций
ОПК-1	Способен использовать положения, законы и методы естественных наук и математики для решения задач инженерной деятельности
ОПК-2	Способен самостоятельно проводить экспериментальные исследования и использовать основные приемы обработки и представления полученных данных

Типовые теоретические вопросы к зачету по дисциплине

- **1.** Что называется силой тока и плотностью тока? Что называется электрическим сопротивлением проводника и от чего оно зависит?
- **2.** Дайте определение удельного сопротивления проводника. Каковы основные недостатки измерения электрического сопротивления по методу амперметра вольтметра?
- **3.** Объяснить расположение линии напряженности и эквипотенциальных поверхностей для исследуемого поля.
- 4. В чём заключается мостовой метод определения сопротивлений? Каковы достоинства мостовых методов измерения?
- **5.** Как классическая теория электропроводности металлов объясняет зависимость сопротивления металлов от температуры?
- 6. Что такое термоэлектронная эмиссия? Что такое уровень Ферми?
- 7. Охарактеризовать сегнетоэлектрики.
- **8.** Объяснить с точки зрения доменной структуры характер зависимости поляризованности сегнетоэлектрика от напряжённости внешнего электрического поля.
- 9. Назовите основные параметры земного магнетизма.
- **10.** Нарисуйте схему установки для определения удельного заряда электрона методом магнетрона. Опишите, как она действует.
- **11.** Что представляют собой сбросовые характеристики магнетрона? Как по виду этих кривых оценить правильность расположения электродов в лампе и лампы в соленоиде?
- **12.** Расскажите, в чем состоит метод фигур Лиссажу, примененный для определения частоты колебаний. Определите по виду фигуры Лиссажу отношение частот колебаний.
- **13.** Напишите закон Био Савара Лапласа. Объясните, как, пользуясь этим законом, можно определить направление и величину магнитной индукции в любой точке пространства.
- **14.** Объясните, что означает закон электромагнитной индукции. Как определить ЭДС индукции и ЭДС самоиндукции?
- 15. Может ли катушка создавать постоянное магнитное поле? Что такое соленоид?
- **16.** Что такое конденсатор? По каким признакам классифицируют конденсаторы? Выведите закон уменьшения (или увеличения) заряда на обкладках конденсатора.
- **17.** Нарисуйте амплитудно-частотную и фазо-частотную характеристики колебательного контура. Что такое резонанс?
- **18.** Получите выражение для резонансной частоты последовательного колебательного контура.
- **19.** Объяснить принцип фокусировки электронного пучка в электронном осциллографе.
- 20. Каковы основные блоки электронного осциллографа и их назначение.