МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ. В.Ф. УТКИНА»

ФАКУЛЬТЕТ ЭЛЕКТРОНИКИ КАФЕДРА МИКРО- и НАНОЭЛЕКТРОНИКИ

МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ Б1.В.03 «ФИЗИКА ПОЛУПРОВОДНИКОВЫХ ПРИБОРОВ»

Специальность 03.03.01 «Прикладные математика и физика»

Специализация Электроника, квантовые системы и нанотехнологии

> Уровень высшего образования Бакалавриат

Квалификация выпускника – бакалавр

Форма обучения – очная

1. ПЛАНЫ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Практическое занятие № 1 (4 час)

Особенности построения функциональных и физико-топологических моделей полупроводниковых приборов, классификация моделей полупроводниковых приборов

Цель работы: ознакомление с основными классами моделей полупроводниковых приборов в дискретном и интегральном исполнении и особенностями построения функциональных и физико-топологических моделей приборов.

Задание

Используя рекомендуемую литературу:

- 1) определить алгоритм проектирования полупроводникового прибора;
- 2) определить функциональную и технологическую модели полупроводникового прибора;
- 3) определить особенности построения функциональной и технологической модели полупроводникового прибора;
 - 4) выбрать математическую модель полупроводникового прибора;
 - 5) определить тепловую модель полупроводникового прибора.

Рекомендуемая литература:

- 1 Полупроводниковые приборы: учебник для вузов/Н.М. Тугов, Б.А. Глебов, Н.А. Чарыков; Под ред. В.А. Лабунцова. М: Энергоатомиздат. 1990. 576 с.
- 2. Маллер Р., Кейминс Т. Элементы интегральных схем: Пер. с англ. М: Мир, 1989. 630 с.
- 3. Романовский М.Н. Интегральные устройства радиоэлектроники. Ч.1. Основные структуры полупроводниковых интегральных схем: учебное пособие для вузов / Романовский М.Н.. Томск: Томский государственный университет систем управления и радиоэлектроники, 2022. 91 с. Текст: электронный// Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/152881.html (дата обращения: 12.08.2025). Режим доступа: для авторизир. пользователей.

Практическое занятие № 2 (4 час)

Модели полупроводниковых диодов. Статическая и динамическая модели диода, определение параметров модели диода

Цель работы: изучение статических и динамических моделей полупроводникового диода, определение параметров модели диода.

Задание

Используя рекомендуемую литературу:

- 1) провести анализ статической и динамических моделей полупроводниковых диодов различного функционального назначения;
- 2) определить основные параметры моделей полупроводниковых диодов различного функционального назначения.

- 1 Полупроводниковые приборы: учебник для вузов/Н.М. Тугов, Б.А. Глебов, Н.А. Чарыков; Под ред. В.А. Лабунцова. М: Энергоатомиздат. 1990. 576 с.
- 2. Маллер Р., Кейминс Т. Элементы интегральных схем: Пер. с англ. М: Мир, 1989. 630 с.

- 3. Романовский М.Н. Интегральные устройства радиоэлектроники. Ч.1. Основные структуры полупроводниковых интегральных схем: учебное пособие для вузов / Романовский М.Н.. Томск: Томский государственный университет систем управления и радиоэлектроники, 2022. 91 с. Текст: электронный// Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/152881.html (дата обращения: 12.08.2025). Режим доступа: для авторизир. пользователей.
- 4. Кольцов, Г. И. Теория и расчет полупроводниковых приборов и интегральных схем: методические указания / Г. И. Кольцов, С. Г. Мадоян, С. И. Диденко. Москва: МИСИС, 2001. 39 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/116661 (дата обращения: 12.08.2025). Режим доступа: для авториз. пользователей.
- 5. Кольцов, Г. И. Теория и расчет полупроводниковых приборов: Твердотельная электроника : учебное пособие / Г. И. Кольцов, С. И. Диденко, М. Н. Орлова. Москва: МИСИС, 2010. 83 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/116663 (дата обращения: 12.08.2025). Режим доступа: для авториз. пользователей

Практическое занятие № 3 (4 час)

Модели биполярных транзисторов. Статические модели. Динамическая модель и динамическая передаточная модели Эберса-Молла

Цель работы: Изучение статических и динамических моделей биполярных транзисторов.

Задание

Используя рекомендуемую литературу:

- 1) провести анализ статических моделей биполярного транзистора и основных параметров моделей;
- 2) провести анализ динамической модели Эберса-Молла биполярного транзистора и основных параметров модели;
- 3) провести анализ динамической передаточной модели Эберса-Молла биполярного транзистора и основных параметров модели.

- 1 Полупроводниковые приборы: учебник для вузов/Н.М. Тугов, Б.А. Глебов, Н.А. Чарыков; Под ред. В.А. Лабунцова. М: Энергоатомиздат. 1990. 576 с.
- 2. Маллер Р., Кейминс Т. Элементы интегральных схем: Пер. с англ. М: Мир, 1989. 630 с.
- 3. Романовский М.Н. Интегральные устройства радиоэлектроники. Ч.1. Основные структуры полупроводниковых интегральных схем: учебное пособие для вузов / Романовский М.Н.. Томск: Томский государственный университет систем управления и радиоэлектроники, 2022. 91 с. Текст: электронный// Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/152881.html (дата обращения: 12.08.2025). Режим доступа: для авторизир. пользователей.
- 4. Кольцов, Г. И. Теория и расчет полупроводниковых приборов и интегральных схем: методические указания / Г. И. Кольцов, С. Г. Мадоян, С. И. Диденко. Москва: МИСИС, 2001. 39 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/116661 (дата обращения: 12.08.2025). Режим доступа: для авториз. пользователей.
 - 5. Кольцов, Г. И. Теория и расчет полупроводниковых приборов: Твердотельная

электроника: учебное пособие / Г. И. Кольцов, С. И. Диденко, М. Н. Орлова. — Москва: МИСИС, 2010. — 83 с. — Текст: электронный // Лань: электронно-библиотечная система. — URL: https://e.lanbook.com/book/116663 (дата обращения: 12.08.2025). — Режим доступа: для авториз. пользователей.

- 6. Зи, С. Физика полупроводниковых приборов: в 2 кн. / С. Зи; Пер. с англ. В. А. Гергеля; Под ред. Р. А. Суриса. М.: Мир, 1984.
 - 7. Шур М. Физика полупроводниковых приборов: В 2-х кн., Пер. с англ. М: Мир, 1992 г.
- 8. Гуртов В.А.Твердотельная электроника: Учеб. пособие. 3-е изд., доп.М:Техносфера, 2008. 512 с.

Практическое занятие № 4 (4 час)

Модели биполярных транзисторов. Динамическая зарядоуправляемая модель. Динамические модели малого сигнала

Цель работы: Изучение динамических моделей биполярных транзисторов. **Задание**

Используя рекомендуемую литературу:

- 1) провести анализ параметров биполярного транзистора как четырехполюсника;
- 2) провести анализ динамических зарядоуправляемых моделей биполярного транзистора и основных параметров моделей;
- 3) провести анализ динамической модели малого сигнала биполярного транзистора и основных параметров модели.

- 1 Полупроводниковые приборы: учебник для вузов/Н.М. Тугов, Б.А. Глебов, Н.А. Чарыков; Под ред. В.А. Лабунцова. М: Энергоатомиздат. 1990. 576 с.
- 2. Маллер Р., Кейминс Т. Элементы интегральных схем: Пер. с англ. М: Мир, 1989. 630 с.
- 3. Романовский М.Н. Интегральные устройства радиоэлектроники. Ч.1. Основные структуры полупроводниковых интегральных схем: учебное пособие для вузов / Романовский М.Н.. Томск: Томский государственный университет систем управления и радиоэлектроники, 2022. 91 с. Текст: электронный// Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/152881.html (дата обращения: 12.08.2025). Режим доступа: для авторизир. пользователей.
- 4. Кольцов, Г. И. Теория и расчет полупроводниковых приборов и интегральных схем: методические указания / Г. И. Кольцов, С. Г. Мадоян, С. И. Диденко. Москва: МИСИС, 2001. 39 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/116661 (дата обращения: 12.08.2025). Режим доступа: для авториз. пользователей.
- 5. Кольцов, Г. И. Теория и расчет полупроводниковых приборов: Твердотельная электроника: учебное пособие / Г. И. Кольцов, С. И. Диденко, М. Н. Орлова. Москва: МИСИС, 2010. 83 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/116663 (дата обращения: 12.08.2025). Режим доступа: для авториз. пользователей.
- 6. Зи, С. Физика полупроводниковых приборов: в 2 кн. / С. Зи; Пер. с англ. В. А. Гергеля; Под ред. Р. А. Суриса. М.: Мир, 1984.
 - 7. Шур М. Физика полупроводниковых приборов: В 2-х кн., Пер. с англ. М: Мир, 1992 г.
- 8. Гуртов В.А.Твердотельная электроника: Учеб. пособие. 3-е изд., доп. М:Техносфера, 2008. 512 с.

Практическое занятие № 5 (4 час)

Модели полевых транзисторов. Статические модели МДП-транзистора. Динамические модели большого и малого сигнала

Цель работы: Изучение статических и динамических моделей полевых транзисторов. **Задание**

Используя рекомендуемую литературу:

- 1) провести анализ статических моделей полевого транзистора и основных параметров моделей;
- 2) провести анализ динамической модели большого сигнала полевого транзистора и основных параметров модели;
- 3) провести анализ динамической модели малого сигнала полевого транзистора и основных параметров модели;
- 4) провести анализ динамической модели мощного полевого транзистора и основных параметров модели.

Рекомендуемая литература:

- 1 Полупроводниковые приборы: учебник для вузов/Н.М. Тугов, Б.А. Глебов, Н.А. Чарыков; Под ред. В.А. Лабунцова. М: Энергоатомиздат. 1990. 576 с.
- 2. Маллер Р., Кейминс Т. Элементы интегральных схем: Пер. с англ. М: Мир, 1989. 630 с.
- 3. Романовский М.Н. Интегральные устройства радиоэлектроники. Ч.1. Основные структуры полупроводниковых интегральных схем: учебное пособие для вузов / Романовский М.Н.. Томск: Томский государственный университет систем управления и радиоэлектроники, 2022. 91 с. Текст: электронный// Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/152881.html (дата обращения: 12.08.2025). Режим доступа: для авторизир. пользователей.
- 4. Кольцов, Г. И. Теория и расчет полупроводниковых приборов и интегральных схем: методические указания / Г. И. Кольцов, С. Г. Мадоян, С. И. Диденко. Москва: МИСИС, 2001. 39 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/116661 (дата обращения: 12.08.2025). Режим доступа: для авториз. пользователей.
- 5. Кольцов, Г. И. Теория и расчет полупроводниковых приборов: Твердотельная электроника: учебное пособие / Г. И. Кольцов, С. И. Диденко, М. Н. Орлова. Москва: МИСИС, 2010. 83 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/116663 (дата обращения: 12.08.2025). Режим доступа: для авториз. пользователей.
- 6. Зи, С. Физика полупроводниковых приборов: в 2 кн. / С. Зи; Пер. с англ. В. А. Гергеля; Под ред. Р. А. Суриса. М.: Мир, 1984.
 - 7. Шур М. Физика полупроводниковых приборов: В 2-х кн., Пер. с англ. М: Мир, 1992 г.

Практическое занятие № 6 (4 час)

Модели тиристоров. Статические модели. Динамическая двухступенчатая модель тиристора. Динамическая трехэлектродная модель тиристора

Цель работы: Изучение статических и динамических моделей тиристоров. **Задание**

Используя рекомендуемую литературу:

- 1) провести анализ статических моделей тиристоров и основных параметров моделей;
- 2) провести анализ динамической двухступенчатой модели тиристора и основных параметров модели;

3) провести анализ динамической трехэлектродной модели тиристора и основных параметров модели.

Рекомендуемая литература:

- 1 Полупроводниковые приборы: учебник для вузов/Н.М. Тугов, Б.А. Глебов, Н.А. Чарыков; Под ред. В.А. Лабунцова. М: Энергоатомиздат. 1990. 576 с.
- 2. Маллер Р., Кейминс Т. Элементы интегральных схем: Пер. с англ. М: Мир, 1989. 630 с.
- 3. Романовский М.Н. Интегральные устройства радиоэлектроники. Ч.1. Основные структуры полупроводниковых интегральных схем: учебное пособие для вузов / Романовский М.Н.. Томск: Томский государственный университет систем управления и радиоэлектроники, 2022. 91 с. Текст: электронный// Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/152881.html (дата обращения: 12.08.2025). Режим доступа: для авторизир. пользователей.
- 4. Кольцов, Г. И. Теория и расчет полупроводниковых приборов и интегральных схем : методические указания / Г. И. Кольцов, С. Г. Мадоян, С. И. Диденко. Москва: МИСИС, 2001. 39 с. Текст : электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/116661 (дата обращения: 12.08.2025). Режим доступа: для авториз. пользователей.
- 5. Кольцов, Г. И. Теория и расчет полупроводниковых приборов: Твердотельная электроника: учебное пособие / Г. И. Кольцов, С. И. Диденко, М. Н. Орлова. Москва: МИСИС, 2010. 83 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/116663 (дата обращения: 12.08.2025). Режим доступа: для авториз. пользователей.
- 6. Зи, С. Физика полупроводниковых приборов: в 2 кн. / С. Зи; Пер. с англ. В. А. Гергеля; Под ред. Р. А. Суриса. М.: Мир, 1984.
 - 7. Шур М. Физика полупроводниковых приборов: В 2-х кн., Пер. с англ. М: Мир, 1992 г.
- 8. Гуртов В.А.Твердотельная электроника: Учеб. пособие. 3-е изд., доп.М:Техносфера, 2008. 512 с.
- 9. Викулин И.М., Стафеев В.И. Физика полупроводниковых приборов. 2-е изд., перераб. и доп. М: радио и связь, 1990. 264 с.

Практическое занятие № 7 (4 час)

Тепловые процессы в полупроводниковых приборах. Тепловые модели и классификация тепловых режимов полупроводниковых приборов

Цель работы: изучение тепловых процессов в полупроводниковых приборах. Тепловые модели и классификация тепловых режимов полупроводниковых приборов.

Задание

Используя рекомендуемую литературу:

- 1) получить общие представления о тепловых процессах в полупроводниковых приборах;
- 2) изучить классификацию и основные особенности тепловых режимов работы полупроводниковых приборов;
- 3) провести анализ тепловых моделей полупроводниковых приборов и основных параметров моделей.

- 1 Полупроводниковые приборы: учебник для вузов/Н.М. Тугов, Б.А. Глебов, Н.А. Чарыков; Под ред. В.А. Лабунцова. М: Энергоатомиздат. 1990. 576 с.
- 2. Маллер Р., Кейминс Т. Элементы интегральных схем: Пер. с англ. М: Мир, 1989. 630 с.

- 3. Романовский М.Н. Интегральные устройства радиоэлектроники. Ч.1. Основные структуры полупроводниковых интегральных схем: учебное пособие для вузов / Романовский М.Н.. Томск: Томский государственный университет систем управления и радиоэлектроники, 2022. 91 с. Текст: электронный// Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/152881.html (дата обращения: 12.08.2025). Режим доступа: для авторизир. пользователей.
- 4. Кольцов, Г. И. Теория и расчет полупроводниковых приборов и интегральных схем: методические указания / Г. И. Кольцов, С. Г. Мадоян, С. И. Диденко. Москва: МИСИС, 2001. 39 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/116661 (дата обращения: 12.08.2025). Режим доступа: для авториз. пользователей.
- 5. Кольцов, Г. И. Теория и расчет полупроводниковых приборов: Твердотельная электроника: учебное пособие / Г. И. Кольцов, С. И. Диденко, М. Н. Орлова. Москва: МИСИС, 2010. 83 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/116663 (дата обращения: 12.08.2025). Режим доступа: для авториз. пользователей.
- 6. Зи, С. Физика полупроводниковых приборов: в 2 кн. / С. Зи; Пер. с англ. В. А. Гергеля; Под ред. Р. А. Суриса. М.: Мир, 1984.
 - 7. Шур М. Физика полупроводниковых приборов: В 2-х кн., Пер. с англ. М: Мир, 1992 г.
- 8. Гуртов В.А.Твердотельная электроника: Учеб. пособие. 3-е изд., доп.М:Техносфера, 2008. 512 с.
- 9. Викулин И.М., Стафеев В.И. Физика полупроводниковых приборов. 2-е изд., перераб. и доп. М: радио и связь, 1990. 264 с.

Практическое занятие № 8 (4 час) Влияние внешних воздействий на параметры полупроводниковых приборов

Цель работы: изучение влияния внешних воздействий на параметры полупроводниковых приборов.

Задание

Используя рекомендуемую литературу:

- 1) изучить физические явления в полупроводниковых структурах под действием температуры, давления (деформации), внешних электромагнитных полей и т.д.;
- 2) изучить влияние температуры, давления (деформации), электромагнитных полей и других внешних воздействий на параметры полупроводниковых приборов.

- 1 Полупроводниковые приборы: учебник для вузов/Н.М. Тугов, Б.А. Глебов, Н.А. Чарыков; Под ред. В.А. Лабунцова. М: Энергоатомиздат. 1990. 576 с.
- 2. Маллер Р., Кейминс Т. Элементы интегральных схем: Пер. с англ. М: Мир, 1989. 630 с.
- 3. Романовский М.Н. Интегральные устройства радиоэлектроники. Ч.1. Основные структуры полупроводниковых интегральных схем: учебное пособие для вузов / Романовский М.Н.. Томск: Томский государственный университет систем управления и радиоэлектроники, 2022. 91 с. Текст: электронный// Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/152881.html (дата обращения: 12.08.2025). Режим доступа: для авторизир. пользователей.
- 4. Кольцов, Г. И. Теория и расчет полупроводниковых приборов и интегральных схем : методические указания / Г. И. Кольцов, С. Г. Мадоян, С. И. Диденко. Москва: МИСИС, 2001.

- 39 с. Текст : электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/116661 (дата обращения: 12.08.2025). Режим доступа: для авториз. пользователей.
- 5. Кольцов, Г. И. Теория и расчет полупроводниковых приборов: Твердотельная электроника : учебное пособие / Г. И. Кольцов, С. И. Диденко, М. Н. Орлова. Москва: МИСИС, 2010. 83 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/116663 (дата обращения: 12.08.2025). Режим доступа: для авториз. пользователей.
- 6. Зи, С. Физика полупроводниковых приборов: в 2 кн. / С. Зи; Пер. с англ. В. А. Гергеля; Под ред. Р. А. Суриса. М.: Мир, 1984.
 - 7. Шур М. Физика полупроводниковых приборов: В 2-х кн., Пер. с англ. М: Мир, 1992 г.
- 8. Гуртов В.А.Твердотельная электроника: Учеб. пособие. 3-е изд., доп.М:Техносфера, 2008 512 с
- 9. Викулин И.М., Стафеев В.И. Физика полупроводниковых приборов. 2-е изд., перераб. и доп. М: радио и связь, 1990. 264 с.

2. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ СТУДЕНТАМ ПО ОСВОЕНИЮ ДИСЦИПЛИНЫ

Перед началом изучения дисциплины студенту необходимо ознакомиться с содержанием рабочей программы дисциплины, с целями и задачами дисциплины, ее связями с другими дисциплинами образовательной программы, методическими разработками по данной дисциплине, имеющимися на образовательном портале РГРТУ и сайте кафедры.

Методические рекомендации студентам по работе над конспектом лекции

Основу теоретического обучения студентов составляют лекции. Они дают систематизированные знания студентам о наиболее сложных и актуальных проблемах изучаемой дисциплины. На лекциях особое внимание уделяется не только усвоению студентами изучаемых проблем, но и стимулированию их активной познавательной деятельности, творческого мышления, развитию научного мировоззрения, профессионально-значимых свойств и качеств.

Перед очередной лекцией необходимо просмотреть по конспекту материал предыдущей лекции. При затруднениях в восприятии материала следует обратиться к основным литературным источникам. Если разобраться в материале опять не удалось, то обратитесь к лектору (по графику его консультаций) или к преподавателю на практических занятиях. Не оставляйте «белых пятен» в освоении материала.

Во время лекции студенты должны не только внимательно воспринимать действия преподавателя, но и самостоятельно мыслить, добиваться понимания изучаемого предмета. Студенты должны аккуратно вести конспект. В случае недопонимания какой-либо части предмета следует задать вопрос в установленном порядке преподавателю. В процессе работы на лекции необходимо так же выполнять в конспектах модели изучаемого предмета (рисунки, схемы, чертежи и т. д.), которые использует преподаватель.

Слушая лекцию, нужно из всего получаемого материала выбирать и записывать самое главное. Следует знать, что главные положения лекции преподаватель обычно выделяет интонацией или повторяет несколько раз. Именно поэтому предварительная подготовка к лекции позволит студенту уловить тот момент, когда следует перейти к конспектированию, а когда можно просто внимательно слушать лекцию. В связи с этим нелишне перед началом лекции еще раз бегло просмотреть учебники или прежние конспекты по изучаемым предметам.

Это станет первичным знакомством с тем материалом, который прозвучит на лекции, а также создаст необходимый психологический настрой.

Чтобы правильно и быстро конспектировать лекцию важно учитывать, что способы подачи лекционного материала могут быть разными. Преподаватель может диктовать материал, или рассказывать его, не давая ничего под запись, или проводить занятие в форме диалога со студентами. Чаще всего можно наблюдать соединение двух или трех вышеназванных способов.

Эффективность конспектирования зависит от умения владеть правильной методикой записи лекции. Конечно, способы конспектирования у каждого человека индивидуальны. Однако существуют некоторые наиболее употребляемые и целесообразные приемы записи лекционного материала.

Запись лекции можно вести в виде тезисов — коротких, простых предложений, фиксирующих только основное содержание материала. Количество и краткость тезисов может определяться как преподавателем, так и студентом. Естественно, что такая запись лекции требует впоследствии обращения к дополнительной литературе. На отдельные лекции можно приносить соответствующий иллюстративный материал на бумажных или электронных носителях, представленный лектором на портале или присланный на «электронный почтовый ящик группы» (таблицы, графики, схемы). Данный материал будет охарактеризован, прокомментирован, дополнен непосредственно на лекции.

Кроме тезисов важно записывать примеры, доказательства, даты и цифры. Значительно облегчают понимание лекции те схемы и графики, которыми преподаватель иллюстрирует теоретический материал. По мере возможности студенты должны переносить их в тетрадь рядом с тем текстом, к которому эти схемы и графики относятся.

Хорошо если конспект лекции дополняется собственными мыслями, суждениями, вопросами, возникающими в ходе прослушивания содержания лекции. Те вопросы, которые возникают у студента при конспектировании лекции, не всегда целесообразно задавать сразу при их возникновении, чтобы не нарушить ход рассуждений преподавателя. Студент может попытаться ответить на них сам в процессе подготовки к практическим занятиям либо обсудить их с преподавателем на консультации.

Важно и то, как будет расположен материал в лекции. Если запись тезисов ведется по всей строке, то целесообразно отделять их время от времени красной строкой или пропуском строки. Примеры же и дополнительные сведения можно смещать вправо или влево под тезисом, а также на поля. В тетради нужно выделять темы лекций, записывать рекомендуемую для самостоятельной подготовки литературу, внести фамилию, имя и отчество преподавателя. Наличие полей в тетради позволяет не только получить «ровный» текст, но и дает возможность при необходимости вставить важные дополнения и изменения в конспект лекции.

При составлении конспектов необходимо использовать избыточность русского языка, сокращая слова. Так в процессе совершенствования навыков конспектирования лекций важно выработать индивидуальную систему записи материала, научиться рационально сокращать слова и отдельные словосочетания.

Практика показывает, что не всегда студенту удается успевать записывать слова лектора даже при использовании приемов сокращения слов. В этом случае допустимо обратиться к лектору с просьбой повторить сказанное. При обращении важно четко сформулировать просьбу, указать какой отрывок необходимо воспроизвести еще раз. Однако не всегда удобно прерывать ход лекции. В этом случае можно оставить пропуск, и после лекции устранить его при помощи конспекта соседа. Важно сделать это в короткий срок, пока свежа память о воспринятой на лекции информации.

Работу над конспектом следует начинать с его доработки, желательно в тот же день, пока материал еще легко воспроизводим в памяти (через 10 часов после лекции в памяти остается не более 30-40 % материала). С целью доработки необходимо прочитать записи, восстановить

текст в памяти, а также исправить описки, расшифровать не принятые ранее сокращения, заполнить пропущенные места, понять текст, вникнуть в его смысл. Далее следует прочитать материал по рекомендуемой литературе, разрешая в ходе чтения возникшие ранее затруднения, вопросы, а также дополняя и исправляя свои записи. Записи должны быть наглядными, для чего следует применять различные способы выделений. В ходе доработки конспекта углубляются, расширяются и закрепляются знания, а также дополняется, исправляется и совершенствуется конспект.

Доработка конспекта лекции с применением учебника, методической литературы, дополнительной литературы, интернет-ресурсов позволяет самостоятельно изучить особенности свойств ряда материалов и применения их в электронной технике, которые не рассмотрены во время лекций и лабораторных занятий. Кроме того, рабочая программа предполагает рассмотрение некоторых относительно несложных тем только во время самостоятельных занятий, без чтения лектором.

Подготовленный конспект и рекомендуемая литература используются при подготовке к лабораторным работам и практическим занятиям. Подготовка сводится к внимательному прочтению учебного материала, к выводу с карандашом в руках всех утверждений и формул, к решению примеров, задач, к ответам на вопросы. Примеры, задачи, вопросы по теме являются средством самоконтроля.

Непременным условием глубокого усвоения учебного материала является знание основ, на которых строится изложение материала. Обычно преподаватель напоминает, какой ранее изученный материал и в какой степени требуется подготовить к очередному занятию. Обращение к ранее изученному материалу не только помогает восстановить в памяти известные положения, выводы, но и приводит разрозненные знания в систему, углубляет и расширяет их. Каждый возврат к старому материалу позволяет найти в нем что-то новое, переосмыслить его с иных позиций, определить для него наиболее подходящее место в уже имеющейся системе знаний. Неоднократное обращение к пройденному материалу является наиболее рациональной формой приобретения и закрепления знаний.

Методические рекомендации студентам по работе с литературой

В рабочей программе дисциплины для каждого раздела и темы дисциплины указывается основная и дополнительная литература, позволяющая более глубоко изучить данный вопрос. Обычно список всей рекомендуемой литературы преподаватель озвучивает на первой лекции или дает ссылки на ее местонахождение (на образовательном портале РГРТУ, на сайте кафедры и т. д.).

При работе с рекомендуемой литературой целесообразно придерживаться такой последовательности. Сначала лучше прочитать заданный текст в быстром темпе. Цель такого чтения заключается в том, чтобы создать общее представление об изучаемом материале, понять общий смысл прочитанного. Затем прочитать вторично, более медленно, чтобы в ходе чтения понять и запомнить смысл каждой фразы, каждого положения и вопроса в целом.

Чтение приносит пользу и становится продуктивным, когда сопровождается записями. Это может быть составление плана прочитанного текста, тезисы или выписки, конспектирование и др. Выбор вида записи зависит от характера изучаемого материала и целей работы с ним. Если содержание материала несложное, легко усваиваемое, можно ограничиться составлением плана. Если материал содержит новую и трудно усваиваемую информацию, целесообразно его законспектировать.

План – это схема прочитанного материала, перечень вопросов, отражающих структуру и последовательность материала.

Конспект — это систематизированное, логичное изложение материала источника. Различаются четыре типа конспектов:

- план-конспект это развернутый детализированный план, в котором по наиболее сложным вопросам даются подробные пояснения,
- текстуальный конспект это воспроизведение наиболее важных положений и фактов источника,
- свободный конспект это четко и кратко изложенные основные положения в результате глубокого изучения материала, могут присутствовать выписки, цитаты, тезисы; часть материала может быть представлена планом,
- тематический конспект составляется на основе изучения ряда источников и дает ответ по изучаемому вопросу.

В процессе изучения материала источника и составления конспекта нужно обязательно применять различные выделения, подзаголовки, создавая блочную структуру конспекта. Это делает конспект легко воспринимаемым и удобным для работы.

Методические рекомендации студентам по подготовке к практическим занятиям

Практические занятия - это форма организации учебного процесса, когда обучающиеся по заданию и под руководством преподавателя изучают обозначенную тему занятия, проводят вычислительные расчеты и делают краткие сообщения.

Для проведения практических занятий используется вычислительная техника, которая размещается в специально оборудованных учебных лабораториях. Применяются разные формы организации обучающихся на практических занятиях: фронтальная, групповая и индивидуальная. При фронтальной форме организации занятий все обучающиеся выполняют одновременно одну и ту же работу. При групповой форме организации занятий одна и та же работа выполняется группами по 2-5 человек. При индивидуальной форме организации занятий каждый обучающийся выполняет индивидуальное задание. Выбор метода зависит от учебнометодической базы и задач курса.

Подготовка к практическим занятиям предполагает изучение лекционного материала по теме занятия и проведение предварительных расчетов, необходимых для успешного выполнения задания. Во время практического занятия обучающиеся выполняют запланированное задание или отчитываются о результатах самостоятельной работы в рамках темы практического занятия. Завершается практическое занятие оформлением индивидуального отчета.

При подготовке к практическим занятиям по дисциплине «Физика полупроводниковых приборов» следует использовать рекомендуемую основную и дополнительную литературу.

Методические рекомендации студентам по подготовке к теоретическому зачету и экзамену

В конце каждого семестра при подготовке к аттестации студент должен повторить изученный в семестре материал и в ходе повторения обобщить его, сформировав цельное представление о нем. Следует иметь в виду, что на подготовку к промежуточной аттестации времени бывает очень мало. Поэтому начинать эту подготовку надо заранее, не дожидаясь последней недели семестра, при этом основной вид подготовки — «свертывание» большого объема информации в компактный вид, а также тренировка в ее «развертывании» (примеры к теории, выведение одних закономерностей из других и т.д.). Надо также правильно распределить силы, не только готовясь к самому экзамену, но и позаботившись о допуске к нему (это добросовестное посещение занятий, выполнение в назначенный срок и активность на практических занятиях).

При подготовке к теоретическому зачету или экзамену студент должен повторить изученный в семестре материал и, в ходе повторения, обобщить его, сформировав цельное представление о нем.

Необходимо помнить, что промежутки между очередными зачетами и экзаменами обычно составляют всего несколько дней. Поэтому подготовку к ним нужно начинать заблаговременно в течение семестра. До наступления сессии уточните у преподавателя порядок проведения промежуточной аттестации по его предмету и формулировки критериев для количественной оценивания уровня подготовки студентов. Для итоговой положительной оценки по предмету необходимо вовремя и с нужным качеством выполнить или защитить контрольные работы, так как всё это может являться обязательной частью учебного процесса по данной дисциплине. Следует всегда помнить, что залог успеха студента в учебе – планомерная работа в течение всего семестра и своевременное выполнение всех видов работы.

Рекомендуется разработать план подготовки к каждому зачету или экзамену, в котором указать, какие вопросы или билеты нужно выучить, какие задачи решить за указанный в плане временной отрезок. Также бывает полезно вначале изучить более сложные вопросы, а затем переходить к изучению более простых вопросов. При этом желательно в начале каждого следующего дня подготовки бегло освежить в памяти выученный ранее материал.

В период экзаменационной сессии организм студента работает в крайне напряженном режиме и для успешной сдачи сессии нужно не забывать о простых, но обязательных правилах:

- по возможности обеспечить достаточную изоляцию: не отвлекаться на разговоры с друзьями, просмотры телепередач, общение в социальных сетях;
 - уделять достаточное время сну;
- отказаться от успокоительных лекарств: здоровое волнение это нормально и его лучше снимать небольшими прогулками, самовнушением;
- внушать себе, что сессия это не проблема, это нормальный рабочий процесс; не накручивайте себя, не создавайте трагедий в своей голове;
- помогите своему организму обеспечьте ему полноценное питание, давайте ему периоды отдыха с переменой вида деятельности;
 - следуйте плану подготовки.

Методические рекомендации студентам по проведению самостоятельной работы

Самостоятельная работа студента над учебным материалом является неотъемлемой частью учебного процесса в вузе. Самостоятельная работа студентов по дисциплине «Датчики систем управления» предназначена для развития у обучающихся навыков целенаправленного самостоятельного приобретения новых знаний и умений.

- В учебном процессе образовательного учреждения выделяются два вида самостоятельной работы:
- 1) аудиторная выполняется на учебных занятиях, под непосредственным руководством преподавателя и по его заданию), студентам могут быть предложены следующие виды заданий:
 - выполнение самостоятельных работ;
 - составление схем, диаграмм, заполнение таблиц;
 - решение задач;
 - работу со справочной, нормативной документацией и научной литературой;
 - защиту выполненных работ;
 - тестирование и т. д.
- 2) внеаудиторная выполняется по заданию преподавателя, но без его непосредственного участия, включает следующие виды деятельности.
 - подготовку к аудиторным занятиям;

- изучение учебного материала, вынесенного на самостоятельную проработку: работа над определенными темами, разделами, вынесенными на самостоятельное изучение в соответствии с рабочими программами учебной дисциплины или профессионального модуля;
 - выполнение домашних заданий разнообразного характера;
- выполнение индивидуальных заданий, направленных на развитие у студентов самостоятельности и инициативы;
 - подготовку к зачету, экзамену;
 - другие виды внеаудиторной самостоятельной работы.

Внеаудиторные самостоятельные работы представляют собой логическое продолжение аудиторных занятий, проводятся по заданию преподавателя, который инструктирует студентов и устанавливает сроки выполнения задания.

При планировании заданий для внеаудиторной самостоятельной работы используются следующие типы самостоятельной работы:

- воспроизводящая (репродуктивная), предполагающая алгоритмическую деятельность по образцу в аналогичной ситуации. Включает следующую основную деятельность: самостоятельное прочтение, просмотр, конспектирование учебной литературы, прослушивание записанных лекций, заучивание, пересказ, запоминание, Internet—ресурсы, повторение учебного материала и др.
- реконструктивная, связанная с использованием накопленных знаний и известного способа действия в частично измененной ситуации, предполагает подготовку отчетов по практическим занятиям, подбор литературы по дисциплинарным проблемам, подготовка к защите лабораторных работ и др.
- эвристическая (частично-поисковая) и творческая, направленная на развитие способностей студентов к исследовательской деятельности.

Одной из важных форм самостоятельной работы студента является работа с литературой ко всем видам занятий. Самостоятельная работа студента с литературой позволяет ему более углубленно вникнуть в изучаемую тему.

Один из методов работы с литературой – повторение: прочитанный текст можно заучить наизусть. Простое повторение воздействует на память механически и поверхностно. Полученные таким путем сведения легко забываются.

Более эффективный метод – метод кодирования: прочитанный текст нужно подвергнуть большей, чем простое заучивание, обработке. Чтобы основательно обработать информацию и закодировать ее для хранения, важно провести целый ряд мыслительных операций: прокомментировать новые данные; оценить их значение; поставить вопросы; сопоставить полученные сведения с ранее известными. Для улучшения обработки информации очень важно устанавливать осмысленные связи, структурировать новые сведения.

Изучение научной, учебной и иной литературы требует ведения рабочих записей. Форма записей может быть весьма разнообразной: простой или развернутый план, тезисы, цитаты, конспект.

План — структура письменной работы, определяющая последовательность изложения материала. Он является наиболее краткой и потому самой доступной и распространенной формой записей содержания исходного источника информации. По существу, это перечень основных вопросов, рассматриваемых в источнике. План может быть простым и развернутым. Их отличие состоит в степени детализации содержания и, соответственно, в объеме.

Преимущество плана состоит в том, что план позволяет наилучшим образом уяснить логику мысли автора, упрощает понимание главных моментов источника информации. Кроме того, он позволяет быстро и глубоко проникнуть в сущность проблематики и, следовательно, гораздо легче ориентироваться в ее содержании и быстрее обычного вспомнить прочитанное. С помощью плана гораздо удобнее отыскивать в источнике нужные места, факты, цитаты и т. д.

Выписки представляют собой небольшие фрагменты текста (неполные и полные предложения, отдельные абзацы, а также дословные и близкие к дословным записи об излагаемых в нем фактах), содержащие в себе основной смысл содержания прочитанного. Выписки представляют собой более сложную форму записи содержания исходного источника информации. По сути, выписки — не что иное, как цитаты, заимствованные из текста. Выписки позволяют в концентрированные форме и с максимальной точностью воспроизвести наиболее важные мысли автора. В отдельных случаях — когда это оправдано с точки зрения продолжения работы над текстом — вполне допустимо заменять цитирование изложением, близким дословному.

Тезисы – сжатое изложение содержания изученного материала в утвердительной (реже опровергающей) форме. Отличие тезисов от обычных выписок состоит в том, что тезисам присуща значительно более высокая степень концентрации материала. В тезисах отмечается преобладание выводов над общими рассуждениями. Записываются они близко к оригинальному тексту, т. е. без использования прямого цитирования.

Аннотация — краткое изложение основного содержания исходного источника информации, дающее о нем обобщенное представление. К написанию аннотаций прибегают в тех случаях, когда подлинная ценность и пригодность исходного источника информации исполнителю письменной работы окончательно неясна, но в то же время о нем необходимо оставить краткую запись с обобщающей характеристикой.

Резюме — краткая оценка изученного содержания исходного источника информации, полученная, прежде всего, на основе содержащихся в нем выводов. Резюме весьма сходно по своей сути с аннотацией. Однако, в отличие от последней, текст резюме концентрирует в себе данные не из основного содержания исходного источника информации, а из его заключительной части, прежде всего, выводов. Но, как и в случае с аннотацией, резюме излагается своими словами — выдержки из оригинального текста в нем практически не встречаются.

Конспект представляет собой сложную запись содержания исходного текста, включающая в себя заимствования (цитаты) наиболее примечательных мест в сочетании с планом источника, а также сжатый анализ записанного материала и выводы по нему.

При выполнении конспекта требуется внимательно прочитать текст, уточнить в справочной литературе непонятные слова и вынести справочные данные на поля конспекта. Нужно выделить главное, составить план. Затем следует кратко сформулировать основные положения текста, отметить аргументацию автора. Записи материала следует проводить, четко следуя пунктам плана и выражая мысль своими словами. Цитаты должны быть записаны грамотно, учитывать лаконичность, значимость мысли. В тексте конспекта желательно приводить не только тезисные положения, но и их доказательства. При оформлении конспекта необходимо стремиться к емкости каждого предложения. Мысли автора книги следует излагать кратко, заботясь о стиле и выразительности написанного. Число дополнительных элементов конспекта должно быть логически обоснованным, записи должны распределяться в определенной последовательности, отвечающей логической структуре произведения. Для дополнения необходимо оставлять Необходимо поля. указывать библиографическое описание конспектируемого источника.

3. ВОПРОСЫ ДЛЯ САМОПОДГОТОВКИ

1	Электронные процессы в полупроводниках.
2	Неравновесные электронные процессы: Инжекция носителей заряда в полупроводник
3	Неравновесные электронные процессы: диффузионный и дрейфовый токи

4	Напари органи на эпактронии на произволи гонаранновно покомбумом на произволи
5	Неравновесные электронные процессы: генерационно-рекомбинационные процессы
5	Неравновесные носители в электрическом поле, токи, ограниченные пространственным
	зарядом
6	Эффекты в полупроводниках при высоком уровне легирования и большой концентрации
_	носителей заряда
7	Контакты металл - полупроводник: барьер Шотки, барьер Мотта, дебаевская длина
	экранирования
8	Контакты металл - полупроводник:невыпрямляющие (омические) контакты (туннельные
	контакты, омические контакты Шотки)
9	МДП-структуры: приповерхностные состояния
10	МДП-структуры: заряд в области пространственного заряда
11	МДП-структуры: зонная диаграмма приповерхностной области полупроводника в
	равновесных условиях
12	Вольт-фарадные характеристики структур МДП
13	Электронно-дырочные (р-n-) переходы. Контактная разность потенциалов
14	Распределение свободных носителей в p-n-переходе
15	Поле и потенциал в р-п-переходе
16	Барьерная и диффузионная емкости р-п-перехода
17	Вольтамперная характеристика р-п-перехода
18	Пробой р-п-перехода
19	Потенциальные барьеры на границах раздела различных полупроводников:
	гетеропереходы
20	Зонные диаграммы гетеропереходов
21	Общие сведения о полупроводниковых диодах . ВАХ диода
22	Выпрямление в диоде. Эквивалентная схема диода
23	Влияние генерации, рекомбинации и объемного сопротивления.
23	базы на характеристики реальных диодов
24	Стабилитроны. Приборные характеристики стабилитронов
25	Параметрические диоды и варикапы
26	Переходные процессы в полупроводниковых диодах
27	Импульсные диоды: диоды с накоплением заряда
28	Импульсные диоды: диоды Шоттки
29	Импульсные диоды: p-i-n- диоды
30	Диоды для усиления и генерации СВЧ-сигнала: туннельные и обращенные диоды
31	
	Диоды для усиления и генерации СВЧ-сигнала: лавинно-пролетные диоды
32	Диоды для усиления и генерации СВЧ-сигнала: диоды Ганна
33	Принцип работы и классификация биполярных транзисторов
34	Основные физические процессы в биполярных транзисторах
35	Вольт-амперные характеристики биполярного транзистора
36	Системы параметров биполярных транзисторов.
37	Схемы включения и режимы работы биполярных транзисторов
38	Статические и динамические характеристики транзистора.
39	Переходные процессы в транзисторе.
40	Транзисторные эффекты: эффект Эрли
41	Транзисторные эффекты: эффект Эрли, Кирка
42	Транзисторные эффекты: смыкания (прокола) эмиттерного и коллекторного переходов
44	Транзисторные эффекты: оттеснения тока эмиттера

45	Составные биполярные транзисторы
46	Дрейфовые транзисторы
47	Типы и устройство полевых транзисторов
48	Полевые транзисторы с управляющим р-п-переходом в качестве затвора: принципы
	работы, конструктивные особенности, параметры и режимы работы
49	СВЧ полевые транзисторы с барьером Шоттки в качестве затвора: принципы работы,
	конструктивные особенности, параметры и режимы работы
50	Полевые транзисторы с изолированным затвором - МДП-транзисторы: принципы работы,
	конструкции, режимы работы.
51	Эквивалентная схема и быстродействие МДП-транзистора
52	Топологические реализации МДП-транзисторов
53	Размерные и другие эффекты в МДП транзисторах
54	Типы МДП-транзисторов для репрограммируемых элементов памяти
55	Гетероструктурные полевые транзисторы.
56	Тонкопленочные полевые транзисторы.
57	Мощные МДП-транзисторы.
58	Полевые приборы с зарядовой связью.
59	Общая характеристика приборов с отрицательным сопротивлением (проводимостью)
60	S-диод
61	Однопереходный транзистор
62	Лавинный транзистор
63	Инжекционно-полевой транзистор.
64	Модуляционный транзистор
65	Динистор и тиристор
66	Симистор
67	Параметры фотоприемников
68	Полупроводниковые фоторезисторы
69	Полупроводниковые фотодиоды
70	Биполярные фототранзисторы
71	Полевые фототранзисторы
72	Солнечные элементы
73	Полупроводниковые источники оптического излучения: светоизлучающие диоды
74	Полупроводниковые источники оптического излучения: инжекционные лазеры
75	Особенности конструирования и расчета полупроводниковых приборов в интегральном
	исполнении
76	Примеры конструкции и топологии интегральных резисторов
77	Примеры конструкции и топологии интегральных диодов
78	Примеры конструкции и топологии интегральных биполярных транзисторов
79	Физические явления, ограничивающие микроминиатюризацию интегральных
	полупроводниковых элементов

4. БИБЛИОГРАФИЧЕСКИЙ СПИСОК

а) основная литература

1) Смирнов, В. И. Физика полупроводниковых приборов : учебное пособие / В. И. Смирнов. — Ульяновск : Ульяновский государственный технический университет, 2022. — 204 с. — ISBN 978-5-9795-2198-5. — Текст: электронный// Цифровой

- образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/129294.html (дата обращения: 28.03.2023). Режим доступа: для авторизир. пользователей
- 2) Климовский А.Б. Физические основы микроэлектроники и наноэлектроники. Физические основы элементной базы полупроводниковой электроники и работы полупроводниковых устройств: учебное пособие для студентов бакалавриата по направлению подготовки 11.03.03 «Проектирование и технология электронных средств» / Климовский А.Б.. Ульяновск : Ульяновский государственный технический университет, 2021. 103 с. ISBN 978-5-9795-2147-3. Текст: электронный// Цифровой образовательный ресурс IPR SMART:[сайт]. URL: https://www.iprbookshop.ru/121284.html (дата обращения: 12.08.2025). Режим доступа: для авторизир. пользователей
- 3) Романовский М.Н. Интегральные устройства радиоэлектроники. Ч.1. Основные структуры полупроводниковых интегральных схем: учебное пособие для вузов / Романовский М.Н.. Томск: Томский государственный университет систем управления и радиоэлектроники, 2022. 91 с. Текст: электронный// Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/152881.html (дата обращения: 12.08.2025). Режим доступа: для авторизир. пользователей
- 4) Кольцов, Г. И. Физика полупроводниковых приборов. Расчет параметров биполярных приборов. Сборник задач: учебное пособие / Г. И. Кольцов, С. И. Диденко, М. Н. Орлова. Москва: МИСИС, 2012. 78 с. ISBN 978-5-87623-533-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/47460 (дата обращения: 12.08.2025). Режим доступа: для авториз. пользователей.
- 5) Кольцов, Г. И. Теория и расчет полупроводниковых приборов и интегральных схем: методические указания / Г. И. Кольцов, С. Г. Мадоян, С. И. Диденко. Москва: МИСИС, 2001. 39 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/116661 (дата обращения: 12.08.2025). Режим доступа: для авториз. пользователей.
- 6) Кольцов, Г. И. Теория и расчет полупроводниковых приборов: Твердотельная электроника: учебное пособие / Г. И. Кольцов, С. И. Диденко, М. Н. Орлова. Москва: МИСИС, 2010. 83 с. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/116663 (дата обращения: 12.08.2025). Режим доступа: для авториз. пользователей.
- 7) Полупроводниковые приборы: учебник для вузов/Н.М. Тугов, Б.А. Глебов, Н.А. Чарыков; Под ред. В.А. Лабунцова. М: Энергоатомиздат. 1990. 576 с.
- 8) Гаман В.И. Физика полупроводниковых приборов: Учебное пособие. Томск: Издво том. ун-та. 1989. 336 с.
- 9) Шур М. Физика полупроводниковых приборов: В 2-х кн., Пер. с англ. М: Мир, 1992 г.
- 10) Викулин И.М., Стафеев В.И. Физика полупроводниковых приборов. 2-е изд., перераб. и доп. М: радио и связь, 1990. 264 с.
- 11) Зи, С. Физика полупроводниковых приборов: в 2 кн. / С. Зи; Пер. с англ. В. А. Гергеля; Под ред. Р. А. Суриса. М.: Мир, 1984.
- 12) Маллер Р., Кейминс Т. Элементы интегральных схем: Пер. с англ. М: Мир, 1989. 630 с.

б) дополнительная литература

1) Горлов, М. И. Современные диагностические методы контроля качества и надежности полупроводниковых изделий / М. И. Горлов, В. А. Сергеев; под редакцией М. И. Горлова. — 3-е

- изд. Ульяновск : Ульяновский государственный технический университет, 2020. 471 с. ISBN 978-5-9795-2000-1. Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. URL: https://www.iprbookshop.ru/106117.html (дата обращения: 04.11.2024). Режим доступа: для авторизир. пользователей
- 2) Лебедев, А. И. Физика полупроводниковых приборов / А. И. Лебедев. Москва: ФИЗМАТЛИТ, 2008. 488 с. ISBN 978-5-9221-0995-6. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/2244 (дата обращения: 12.08.2025). Режим доступа: для авториз. пользователей.
- 3) Филиппов, В. В. Физика полупроводниковых приборов : учебное пособие / В. В. Филиппов, С. В. Мицук. Липецк: Липецкий ГПУ, 2016. 125 с. ISBN 978-5-88526-787-8. Текст: электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/126986 (дата обращения: 12.08.2025). Режим доступа: для авториз. пользователей.
- 4) Физика полупроводниковых приборов : учебно-методическое пособие / составитель В. Я. Гришаев, Е. В. Никишин. Саранск : МГУ им. Н.П. Огарева, 2020. 72 с. ISBN 978-5-7103-4037-0. Текст : электронный // Лань: электронно-библиотечная система. URL: https://e.lanbook.com/book/204554 (дата обращения: 12.08.2025). Режим доступа: для авториз. пользователей.
- 5) Гуртов В.А.Твердотельная электроника: Учеб. пособие. 3-е изд., доп.М:Техносфера, 2008. 512 с.

5. КОНТРОЛЬНЫЕ ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ТЕОРЕТИЧЕСКОМУ ЗАЧЕТУ И ЭКЗАМЕНУ

	JA IE13 H JRJANIEH3			
Тема	Тема 1 «Введение»			
1.1	Электронные процессы в полупроводниках			
1.2	Неравновесные электронные процессы: Инжекция носителей заряда в полупроводник			
1.3	Неравновесные электронные процессы: диффузионный и дрейфовый токи			
1.4	Неравновесные электронные процессы: генерационно-рекомбинационные процессы			
1.5	Неравновесные носители в электрическом поле, токи, ограниченные пространственным			
	зарядом			
1.6	Эффекты в полупроводниках при высоком уровне легирования и большой концентрации			
	носителей заряда			
Тема	Тема 2 «Барьерные полупроводниковые структуры»			
2.1	Контакты металл - полупроводник: барьер Шотки, барьер Мотта, дебаевская длина			
	экранирования			
2.2	Контакты металл - полупроводник:невыпрямляющие (омические) контакты (туннельные			
	контакты, омические контакты Шотки)			
2.3	МДП-структуры: приповерхностные состояния			
2.4	МДП-структуры: заряд в области пространственного заряда			
2.5	МДП-структуры: зонная диаграмма приповерхностной области полупроводника в равновесных условиях			
2.6	Вольт-фарадные характеристики структур МДП			
2.7	Электронно-дырочные (р-n-) переходы. Контактная разность потенциалов			
2.8	Распределение свободных носителей в p-n-переходе			
2.9	Поле и потенциал в р-п-переходе			
2.10	Барьерная и диффузионная емкости р-п-перехода			
2.11	Вольтамперная характеристика р-п-перехода			
2.12	Пробой р-п-перехода			

2.13	Потенциальные барьеры на границах раздела различных полупроводников:				
2.13	гетеропереходы				
2.14	Зонные диаграммы гетеропереходов				
Тема 3 «Полупроводниковые диоды»					
3.1	Общие сведения о полупроводниковых диодах . ВАХ диода				
3.2	Выпрямление в диоде. Эквивалентная схема диода				
3.3	Влияние генерации, рекомбинации и объемного сопротивления базы на				
3.3	характеристики реальных диодов				
3.4	Стабилитроны. Приборные характеристики стабилитронов				
3.5	Параметрические диоды и варикапы				
3.6	Переходные процессы в полупроводниковых диодах				
3.7	Импульсные диоды: диоды с накоплением заряда				
3.8	Импульсные диоды: диоды Шоттки				
3.9	Импульсные диоды: р-і-п- диоды				
3.10	Диоды для усиления и генерации СВЧ-сигнала: туннельные и обращенные диоды				
3.11	Диоды для усиления и генерации СВЧ-сигнала: лавинно-пролетные диоды				
3.12	Диоды для усиления и генерации СВЧ-сигнала: диоды Ганна				
	4 «Биполярные транзисторы»				
4.1	Принцип работы и классификация биполярных транзисторов				
4.2	Основные физические процессы в биполярных транзисторох				
4.3	Вольт-амперные характеристики биполярного транзистора				
4.4	Системы параметров биполярных транзисторов.				
4.5	Схемы включения и режимы работы биполярных транзисторов				
4.6	Статические и динамические характеристики транзистора.				
4.7	Переходные процессы в транзисторе.				
4.8	Транзисторные эффекты: эффект Эрли				
4.9	Транзисторные эффекты: эффект Эрли, Кирка				
4.10	Транзисторные эффекты: смыкания (прокола) эмиттерного и коллекторного переходов				
4.11	Транзисторные эффекты: оттеснения тока эмиттера				
4.12	Составные биполярные транзисторы				
4.13	Дрейфовые транзисторы				
4.14	Биполярные транзисторы с гетеропереходами				
	5 «Полевые транзисторы»				
5.1	Типы и устройство полевых транзисторов				
5.2	Полевые транзисторы с управляющим p-n-переходом в качестве затвора: принципы				
7 0	работы, конструктивные особенности, параметры и режимы работы				
5.3	СВЧ полевые транзисторы с барьером Шоттки в качестве затвора: принципы работы,				
<u> </u>	конструктивные особенности, параметры и режимы работы				
5.4	Полевые транзисторы с изолированным затвором - МДП-транзисторы: принципы работы,				
	конструкции, режимы работы.				
5.5	Эквивалентная схема и быстродействие МДП-транзистора				
5.6	Топологические реализации МДП-транзисторов				
5.7	Размерные и другие эффекты в МДП транзисторах				
5.8	Типы МДП-транзисторов для репрограммируемых элементов памяти				
5.9	Гетероструктурные полевые транзисторы.				
5.10	Тонкопленочные полевые транзисторы.				
5.11	Мощные МДП-транзисторы.				

5.12	Полевые приборы с зарядовой связью.			
Тема 6 «Полупроводниковые приборы с вольт-амперной характеристикой S-типа»				
6.1	Общая характеристика приборов с отрицательным сопротивлением (проводимостью)			
6.2	S-диод			
6.3	Однопереходный транзистор			
6.4	Лавинный транзистор			
6.5	Инжекционно-полевой транзистор.			
6.6	Модуляционный транзистор			
6.7	Динистор и тиристор			
6.8	Симистор			
Тема 7 «Приборы полупроводниковой оптоэлектроники»				
7.1	Параметры фотоприемников			
7.2	Полупроводниковые фоторезисторы			
7.3	Полупроводниковые фотодиоды			
7.4	Биполярные фототранзисторы			
7.5	Полевые фототранзисторы			
7.6	Солнечные элементы			
7.7	Полупроводниковые источники оптического излучения: светоизлучающие диоды			
7.8	Полупроводниковые источники оптического излучения: инжекционные лазеры			
Тема	8 «Полупроводниковые приборы в интегральном исполнении»			
8.1	Особенности конструирования и расчета полупроводниковых приборов в			
	интегральном исполнении			
8.2	Примеры конструкции и топологии интегральных резисторов			
8.3	Примеры конструкции и топологии интегральных диодов			
8.4	Примеры конструкции и топологии интегральных биполярных транзисторов			
8.5	Физические явления, ограничивающие микроминиатюризацию интегральных			
	полупроводниковых элементов			

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СОГЛАСОВАНО **ФГБОУ ВО "РГРТУ", РГРТУ,** Литвинов Владимир Георгиевич, Заведующий кафедрой МНЭЛ

19.09.25 15:39 (МSK) Прост

Простая подпись