МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Микро- и наноэлектроника»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

Б1.В.ДВ.05.01 « Неупорядоченные полупроводники»

Направление подготовки 03.03.01 «Прикладные математика и физика»

Направленность (профиль) подготовки Электроника, квантовые системы и нанотехнологии

> Уровень подготовки Академический бакалавриат

Квалификация выпускника – бакалавр

Формы обучения – очная

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

- ПК-1.1 проводит моделирование и исследования функциональных, статических, динамических, временных, частотных характеристик приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения;
 - ПК-2.1 анализирует научные данные, результаты экспериментов и наблюдений;
- ПК-3.1 проводит контроль электрических параметров активной части схемы и трассировки коммутационных плат изделий "система в корпусе";
- ПК-3.2 проводит проверку электрических параметров интегральных электронных схем, изделий "система в корпусе" на соответствие требованиям технического задания.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях и самостоятельных работах. При оценивании результатов освоения практических занятий и самостоятельной работы применяется шкала оценки «зачтено – не зачтено». Количество практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой. Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением теоретического зачета. Форма проведения зачета — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса. В процессе подготовки к устному ответу экзаменуемый должен составить в письменном виде план ответа, включающий в себя определения, выводы формул, рисунки, схемы и т.п.

Паспорт фонда оценочных средств по дисциплине (модулю)

№ п / п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия
1	2	3	4
1	Введение	ПК-1.1, ПК-2.1	зачет
2	Микроскопические и термодинамические аспекты классификации неупорядоченных систем	ПК-1.1, ПК-2.1	практические занятия, зачет

3	Атомная структура неупорядоченных	ПК-1.1, ПК-2.1, ПК-3.1,	практические
	систем	ПК-3.2	занятия, зачет
4	Электронные состояния, оптические	ПК-1.1, ПК-2.1, ПК-3.1,	практические
	свойства и транспорт носителей в	ПК-3.2	занятия, зачет
	неупорядоченных полупроводниках		
5	Технологические методы	ПК-1.1, ПК-2.1, ПК-3.1,	практические
	получения неупорядоченных	ПК-3.2	занятия, зачет
	полупроводников		
6	Способы управления	ПК-1.1, ПК-2.1, ПК-3.1,	практические
	свойствами неупорядоченных	ПК-3.2	занятия, зачет
	полупроводников		
7	Контактные и поверхностные явления	ПК-1.1, ПК-2.1, ПК-3.1,	практические
	в структурах на основе	ПК-3.2	занятия, зачет
	неупорядоченных полупроводников		
8	Приборы и устройства на основе	ПК-1.1, ПК-2.1, ПК-3.1,	практические
	неупорядоченных полупроводников	ПК-3.2	занятия, зачет

Формы текущего контроля

Текущий контроль по дисциплине «Неупорядоченные полупроводники» проводится в виде экспресс — опросов и заданий по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно и на практических занятиях. Учебные пособия по дисциплине «Неупорядоченные полупроводники», рекомендуемые для самостоятельной работы обучающихся, содержат необходимый теоретический материал и вопросы по каждому из разделов дисциплины. Результаты ответов на вопросы тестовых заданий контролируются преподавателем.

Формы промежуточного контроля

Формой промежуточного контроля по дисциплине является теоретический зачет. К зачету допускаются обучающиеся, полностью выполнившие все виды учебной работы, предусмотренные учебным планом и настоящей программой. Форма проведения зачета – устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины.

Критерии оценки компетенций обучающихся и шкалы оценивания

Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах лабораторных занятий, а также самостоятельной работы оценивается по критериям шкалы оценок: «зачтено» — «не зачтено». Освоение материала дисциплины и контролируемых компетенций обучающегося служит основанием для допуска обучающегося к этапу промежуточной аттестации — теоретическому зачету.

Целью проведения промежуточной аттестации (зачета) является проверка общепрофессиональных и профессиональных компетенций, приобретенных студентом при изучении дисциплины «Неупорядоченные полупроводники».

Уровень теоретической подготовки определяется составом приобретенных компетенций, усвоенных им теоретических знаний и методов, а также умением осознанно, эффективно использовать их при решении задач целенаправленного применения некристаллических. неупорядоченных материалов для изделий современной электроники.

Теоретический зачет организуется и осуществляется, как правило, в форме собеседования. Средством, определяющим содержание собеседования студента с экзаменатором, являются экзаменационный билет, содержание которого определяется ОПОП и Рабочей программой. Экзаменационный билет включает в себя, как правило, два вопроса, один из которых относятся к указанным выше теоретическим разделам дисциплины и один – практическому применению неупорядоченных полупроводников в электронной технике.

Оценке на заключительной стадии теоретического зачета подвергаются устные ответы экзаменующегося на вопросы экзаменационного билета, а также дополнительные вопросы экзаменатора по критериям шкалы оценок: «зачтено» – «не зачтено».

Применяются следующие критерии оценивания компетенций (результатов):

- уровень усвоения материала, предусмотренного программой;
- умение анализировать материал, устанавливать причинно-следственные связи;
- полнота, аргументированность, убежденность ответов на вопросы;
- качество ответа (общая композиция, логичность, убежденность, общая эрудиция);
- использование дополнительной литературы при подготовке к этапу промежуточной аттестации.

К оценке уровня знаний и практических умений и навыков рекомендуется предъявлять следующие общие требования.

Оценка «Зачтено» выставляется обучающемуся, который показывает полные или достаточно полные и твёрдые знания программного материала дисциплины, правильное понимание сущности и взаимосвязи рассматриваемых явлений (процессов); правильно, аргументировано отвечает на все вопросы, с приведением примеров; владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данной дисциплины, других изучаемых предметов; делает несущественные ошибки в ответах на дополнительные вопросы.

Дополнительным условием получения оценки «зачтено» могут стать хорошие успехи при выполнении самостоятельной работы, систематическая активная работа на практических занятиях.

Оценка «**Не зачтено**» выставляется обучающемуся, который демонстрирует отсутствие знаний значительной части программного материала дисциплины (не справился с 50% вопросов и заданий при ответе на вопросы билета), в ответах на дополнительные вопросы допускает существенные и грубые ошибки. Целостного представления о взаимосвязях элементов дисциплины «Неупорядоченные полупроводники» и использования предметной терминологии у обучающегося нет.

Типовые контрольные темы практических занятий и вопросы по дисциплине «Неупорядоченные полупроводники»

Примерные темы практических занятий

	примерные темы практических занятии			
№	Наименование темы			
1	Микроскопические и термодинамические аспекты классификации неупорядоченных систем. Атомная структура неупорядоченных систем.			
2	Особенности атомной структуры неупорядоченных систем			
3	Электронные состояния, оптические свойства и транспорт носителей в неупорядоченных полупроводниках			
4	Технологические методы получения объемных и пленочных неупорядоченных полупроводников			
5	Особенности управления свойствами неупорядоченных полупроводников			
6	Контактные и поверхностные явления в структурах на основе неупорядоченных полупроводников			
7	Электронные приборы и устройства на основе неупорядоченных полупроводников			
8	Оптоэлектронные приборы и устройства на основе неупорядоченных полупроводников			

Вопросы к теоретическому зачету

Тема 1 «Введение

1.1	Hotomya monyaya Ayoyyay yayyangaayayyyy ya ayyanna ayyyan n Docoyy y oo ayyayyay				
	История развития физики неупорядоченных полупроводников в России и за рубежом				
1.2	Определение и критерии неупорядоченного материала.				
Tema 2 «Микроскопические и термодинамические аспекты классификации					
	орядоченных систем»				
2.1	Виды неупорядоченных систем. Случайные и неслучайные отклонения в				
2.2	потенциальной энергии носителей				
2.2	Способы классификации неупорядоченных систем				
2.3	Термодинамические уровни описания стабильности				
2.4	Классификация метастабильных состояний				
2.5	Аморфные и стеклообразные состояния				
2.1	Тема 3 «Атомная структура неупорядоченных систем»				
3.1	Понятие ближнего, среднего и дальнего порядка в расположении атомов				
3.2	Микрокристаллическая модель строения некристаллического материала.				
3.3	Модель аморфной сетки				
3.4	Методы исследования структуры неупорядоченных полупроводников				
	Тема 4 «Электронные состояния, оптические свойства и транспорт носителей в				
•	орядоченных полупроводниках»				
4.1	Локализованные электронные состояния				
4.2	Особенности структуры и модели энергетических зон в неупорядоченных				
4.0	полупроводниках				
4.3	Собственные свойства неупорядоченных полупроводников различных классов				
4.4	Электрофизические свойства неупорядоченных полупроводников. Механизмы				
4.7	электропроводности				
4.5	Электрофизические свойства неупорядоченных полупроводников. ТермоЭДС и				
4.5	коэффициент Холла.				
4.6	Край поглощения и фотопроводимость в неупорядоченных полупроводниках				
<i>r</i> 1	Тема 5 «Технологические методы получения неупорядоченных полупроводников»				
5.1	Анализ существующих методов получения аморфных слоев сложного состава				
5.2	Применение лазерного излучения и плазменных ускорителей для получения аморфных				
5 0	пленок				
5.3	Амортизация кристаллических тел путем воздействия высокоэнергетических				
<i>-</i> 1	излучений				
5.4	Технологические особенности получения стекловидных пленок из ХСП				
5.5	Технологические особенности получения аморфных пленок их ХСП				
5.6	Получение аморфных твердых материалов из растворов. Стекла, полученные				
- 7	гомогенным осаждением гелей. Аморфные металлы				
5.7	Синтез стеклообразных полупроводников				
5.8	Синтез α-Si:Н методом тлеющего разряда				
5.9	Химическое осаждение из газовой фазы				
5.10	Другие методы осаждения пленок α-Si:H				
<i>c</i> 1	Тема 6 «Способы управления свойствами неупорядоченных полупроводников»				
6.1	Фотоиндуцированное изменение свойств стеклообразных полупроводников				
6.2	Введение добавок в процессе синтеза неупорядоченных материалов				
6.3	Влияние легирования на структуру и содержание водорода в α-Si:Н				
6.4	Влияние легирования на проводимость и оптического поглощения в α-Si:H				
6.5	Метастабильные процессы в α-Si:Н и проблемы управления их свойствами				
6.6	Инверсия знака основных носителей заряда в халькогенидных стеклообразных				
	полупроводниках				
6.7	Модификация аморфных пленок				
6.8	Легирование расплавов				
6.9	Структурная модификация свойств неупорядоченных полупроводников				

	Тема 7 «Контактные и поверхностные явления в структурах на основе					
неупорядоченных полупроводников»						
7.1	Потенциальные барьеры в неупорядоченных полупроводниках					
7.2	Размерные ограничения в барьерных структурах на неупорядоченных					
	полупроводниках					
7.3	Особенности токопрохождения в барьерных слоях на неупорядоченных					
	полупроводниках					
7.4	Электрофизические характеристики потенциальных барьеров на неупорядоченных					
	полупроводниках					
7.5	Основные методы исследования барьеров на неупорядоченных полупроводниках					
	Тема 8 «Приборы и устройства на основе неупорядоченных полупроводников»					
8.1	Эффект переключения в неупорядоченных полупроводниках					
8.2						
	ВАХ, структурно-фазовые переходы)					
8.3	ВАХ для образца полупроводника, в котором формируется шнур тока					
8.4	Конструкторско-технологические особенности создания переключающих элементов					
8.5	Конструкция трехуровневого пленочного элемента памяти					
8.6	Классификация систем оптической записи информации					
8.7	Особенности фотостимулированных изменений скорости растворения пленок ХСП					
8.8	Схема электрофотографического процесса					
8.9	Фотоэлектрические преобразователи на основе α-Si:Н					
8.10	Тонкопленочные транзисторы на основе α-Si:H					
8.11	Фотоэлектрические преобразователи на основе α-Si:Н					
8.12	Конструкции солнечных элементов на основе α-Si:Н					
	Тема 9 «Заключение»					
9.1	Перспективы развитие электроники на неупорядоченных материалах					

Составил

к.т.н., доцент кафедры микро- и наноэлектроники

Вишняков Н.В.

Зав. кафедрой микро- и наноэлектроники д.ф.-м.н., доцент

Литвинов В.Г.

Оператор ЭДО ООО "Компания "Тензор"

Простая подпись

18.07.25 17:21 (MSK)

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СОГЛАСОВАНО **ФГБОУ ВО "РГРТУ", РГРТУ,** Литвинов Владимир Георгиевич, Заведующий кафедрой МНЭЛ