МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Электронные вычислительные машины»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

«Основы теории вычислительных систем»

Направление подготовки 09.03.01 Информатика и вычислительная техника

Направленность (профиль) подготовки Программно-аппаратное обеспечение вычислительных систем,

комплексов и компьютерных сетей

Квалификация (степень) выпускника — бакалавр

Форма обучения — очная, заочная

1 ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы — это совокупность учебно-методических материалов (практических заданий, описаний форм и процедур проверки), предназначенных для оценки качества освоения обучающимися данной дисциплины как части ОПОП.

Цель — оценить соответствие знаний, умений и владений, приобретенных обучающимся в процессе изучения дисциплины, целям и требованиям ОПОП в ходе проведения промежуточной аттестации.

Основная задача – обеспечить оценку уровня сформированности компетенций.

Контроль знаний обучающихся проводится в форме промежуточной аттестации.

Промежуточная аттестация проводится в форме зачета. Форма проведения зачета - тестирование, письменный опрос по теоретическим вопросам и выполнение практических заданий.

2 ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Сформированность каждой компетенции (или ее части) в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

Уровень освоения компетенций, формируемых дисциплиной:

Описание критериев и шкалы оценивания тестирования:

Шкала оценивания	Критерий	
3 балла	уровень усвоения материала, предусмотренного программой:	
(эталонный уровень)	процент верных ответов на тестовые вопросы от 85 до 100%	
2 балла	уровень усвоения материала, предусмотренного программой:	
(продвинутый уровень)	процент верных ответов на тестовые вопросы от 70 до 84%	
1 балл	уровень усвоения материала, предусмотренного программой:	
(пороговый уровень)	процент верных ответов на тестовые вопросы от 50 до 69%	
0 баллов	уровень усвоения материала, предусмотренного программой:	
	процент верных ответов на тестовые вопросы от 0 до 49%	

Описание критериев и шкалы оценивания теоретического вопроса:

Шкала оценивания	Критерий	
3 балла	выставляется студенту, который дал полный ответ на вопрос,	
(эталонный уровень)	показал глубокие систематизированные знания, смог привести	
	примеры, ответил на дополнительные вопросы преподавателя	
2 балла	выставляется студенту, который дал полный ответ на вопрос, но на	
(продвинутый уровень)	некоторые дополнительные вопросы преподавателя ответил только с	
	помощью наводящих вопросов	
1 балл	выставляется студенту, который дал неполный ответ на вопрос в	
(пороговый уровень)	билете и смог ответить на дополнительные вопросы только с	
	помощью преподавателя	
0 баллов	выставляется студенту, который не смог ответить на вопрос	

Описание критериев и шкалы оценивания практического задания:

Шкала оценивания	Критерий	
3 балла	Задача решена верно	
(эталонный уровень)		
2 балла	Задача решена верно, но имеются неточности в логике решения	
(продвинутый уровень)		
1 балл	Задача решена верно, с дополнительными наводящими вопросами	
(пороговый уровень)	преподавателя	
0 баллов	Задача не решена	

На промежуточную аттестацию выносится тест, два теоретических вопроса и 2 задачи. Максимально студент может набрать 15 баллов. Итоговый суммарный балл студента, полученный при прохождении промежуточной аттестации, переводится в традиционную форму по системе «зачтено» и «незачтено».

Оценка «зачтено» выставляется студенту, который набрал в сумме не менее 5 баллов при условии выполнения всех заданий на уровне не ниже порогового. Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

Оценка «незачтено» выставляется студенту, который набрал в сумме менее 5 баллов или не выполнил всех предусмотренных в течение семестра практических заданий.

3 ПАСПОРТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ ПО ДИСЦИПЛИНЕ

Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или	Вид, метод, форма оценочного мероприятия
Тема 1. Введение	ее части) ОПК-1, ОПК-9	Зачет
Тема 2. Состав и функционирование СОД	ОПК-1, ОПК-9	Зачет
Тема 3. Системы параллельной обработки данных	ОПК-1, ОПК-9	Зачет
Тема 4. Системы реального времени	ОПК-1, ОПК-9	Зачет
Тема 5. Многопроцессорные вычислительные системы	ОПК-1, ОПК-9	Зачет
Тема 6. Задача идентификации и моделирования ВС	ОПК-1, ОПК-9	Зачет
Тема 7. Методы и средства оценки качества функционирования ВС	ОПК-1, ОПК-9	Зачет
Тема 8. Некоторые варианты построения BC	ОПК-1, ОПК-9	Зачет
Тема 9. Контроль правильности функционирования ВМ и ВС	ОПК-1, ОПК-9	Зачет

4 ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ

Промежуточная аттестация в форме зачета

Код компетенции	Результаты освоения ОПОП Содержание компетенций	
ОПК-1	Способен применять естественнонаучные и общеинженерные	
	знания, методы математического анализа и моделирования,	
	теоретического и экспериментального исследования в	
	профессиональной деятельности	

ОПК-1.1. Демонстрирует естественнонаучные и общеинженерные знания, знания методов математического анализа и моделирования, теоретического и экспериментального исследования ОПК-1.2. Применяет естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности ОПК-1.3. Использует современные информационные технологии в профессиональной деятельности

Код компетенции	Результаты освоения ОПОП Содержание компетенций	
ОПК-9	Способен осваивать методики использования программных средств для решения практических задач	

ОПК-9.1. Демонстрирует знания современного состояния информационных технологий и программных средств, применяемых при решении практических задач ОПК-9.2. Понимает особенности и специфику различных классов программных средств ОПК-9.3. Осуществляет применение новых методик использования программных средств для решения практических задач

Типовые тестовые вопросы:

Вариант 1

- 1. Какое определение системы обработки данных (СОД) является наиболее правильным?
- + СОД совокупность аппаратных и программных средств, предназначенных для информационного обслуживания пользователей;
- СОД программные средства, предназначенные для информационного обслуживания пользователей;
- СОД совокупность аппаратных средств, предназначенных для работы с различными данными.
- 2. Какой из перечисленных вариантов организации систем обработки данных подразумевает одиночный поток данных?

ОКМД;

МКМД;

+ОКОД.

- 3. Какие потоки событий обладают свойством ординарности? + потоки, в которых события появляются поочередно, а не группами по несколько сразу; потоки, в которых события появляются группами по несколько сразу, а не поочередно; потоки, вероятный характер которых не зависят от времени; потоки, вероятный характер которых зависит от времени.
- 4. Решение какой проблемы наиболее важно для операционных систем многопроцессорных вычислительных комплексов?

взаимодействие с пользователями; +распределение ресурсов между задачами; установка программ.

- 5. В чем отличие универсальных мониторов от специальных? +универсальные мониторы регистрируют все возможные события, протекающие в системе, а специальные мониторы регистрируют определённую часть событий; универсальные мониторы реализованы программно, а специальные аппаратно; универсальные мониторы реализованы аппаратно, а специальные программно.
- 6. В чём основное достоинство ассоциативных систем (АС)? множественный поток команд; +ассоциативные системы позволяют выбирать информацию по её содержанию, а не по адресам данных; низкий объем памяти матрицы.
- 7. Выберите несуществующий класс системы реального времени: система без ограничений пребывания заявок в системе; система с относительными ограничениями на время пребывания заявок; система с абсолютными ограничениями на время пребывания заявок в системе; +система с разностными ограничениями на время пребывания заявок.
- 8. Для каких целей используется введение информационной избыточности в системах кодирования информации? сжатие данных; +контроль правильности передачи данных; увеличение скорости передачи данных; удобство восприятия данных.
- 9. Что является первым этапом в цикле выполнения команд при конвейеризации? формирование адресных операндов; расшифровка кода; +формирование адреса команды; выборка операндов.

Вариант 2

- 1. Какую характеристику системы обработки данных можно назвать дополнительной, а не основной? производительность; надежность; + габариты; сложность.
- 2. Выберите раздел, не относящийся к теории вычислительных систем: архитектура систем; +искусственный интеллект; метрическая теория систем.
 - 3. По принципу организации конвейера выделяют:

+конвейер операций, конвейер команд; конвейер сложения, конвейер вычитания; внутренний и внешний конвейеры.

4. Выберите верное утверждение об экспериментальных методах моделирования вычислительных систем:

+экспериментальные методы основываются на полученных данных о функционировании систем в реальных или специально созданных устройствах с целью оценки качества их функционирования и выявления зависимостей, характерных свойств системы и их составляющих;

экспериментальные методы обладают наиболее наименьшим объёмом вычислений; зависимости, полученные экспериментальными методами, являются строго доказуемыми и их достоверность не вызывает сомнения.

- 5. Что такое дисциплина обслуживания? +правило, по которому заявки назначаются на обслуживание; последовательность однородных событий следующих одно за другим в какие-то случайные моменты времени; характеристика вычислительной мощности, характеризующая количество вычисленной работы, произведённой системой за единицу времени.
- 6. Какой недостаток имеют многопроцессорные вычислительные комплексы с общей шиной? простота управления и удаление устройств из комплекса; +невысокое быстродействие; простота построения.
- 7. Какая характеристика не относится к свойствам моделей вычислительных систем? мощность; размерность; сложность вычислений; +частота процессора.
- 8. На чём основан выборочный метод регистрации состояний вычислительной системы? +на регистрации состояний ВС в заданный момент времени через равные промежутки времени; на регистрации состояний ВС в момент определённых событий, происходящих в системе (начало конец ввода-вывода, этап обращения к памяти); на принципе выполнения измерений прикладной программой.
- 9. Как могут выбираться заявки на обслуживание при бесприоритетном обслуживании? в порядке поступления (FIFO); по принципу LIFO; случайным образом; +всеми указанными методами.

Типовые практические задания:

Задание 1

Система S представляет собой компьютер. В каждый момент времени компьютер может находиться в одном из состояний:

- S1 компьютер исправен, решает задачу;
- S2 компьютер исправен, не решает задачу;
- S3 компьютер неисправен, факт неисправности не установлен;
- S4 факт неисправности установлен, ведётся поиск неисправности;
- S5 компьютер ремонтируется.

Представить работу компьютера в виде марковского процесса. Изобразить граф состояний.

Критерии выполнения задания 1

Задание считается выполненным, если обучающийся изобразил граф, эквивалентный представленному на рисунке 1.

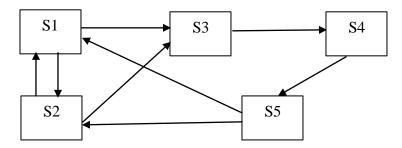


Рисунок 1 – Граф состояний системы

Задание 2

Система реального времени имеет следующие параметры:

Интенсивность потока заявок λ_i , c^{-1}

λ_1	λ_2	λ_3	λ_4	λ_5
1.1	6.1	5.1	7.3	1.3

Трудоёмкость обслуживания заявок, θ_i , тыс.оп

λ_1	λ_2	λ_3	λ_4	λ_5
1.1	6.1	5.1	7.3	1.3

Определить нижнее значение быстродействия B_{\min} для системы с неограниченным временем пребывания заявок.

Критерии выполнения задания 2

Задание считается выполненным, если: обучающийся определил нижнее значение быстродействия B_{\min} по формуле:

$$B_{\min} = \sum_{i=1}^{5} \lambda_i \theta_i = 367,72 \frac{m \omega c.on}{c}.$$

Типовые теоретические вопросы:

- 1) Характеристики и параметры систем обработки данных.
- 2) Классификация систем параллельной обработки данных.
- 3) Режим реального времени.
- 4) Порядок функционирования систем реального времени.
- 5) Многопроцессорные вычислительные комплексы. Основные типы структурной организации.
- 6) Характеристики многопроцессорных вычислительных комплексов с общей памятью.
- 7) Характеристики многопроцессорных вычислительных комплексов с индивидуальной памятью.
- 8) Многомашинные вычислительные комплексы.
- 9) Особенности организации вычислительных процессов в многопроцессорных и многомашинных вычислительных комплексах.
- 10) Общие принципы подхода к тестированию программных изделий.
- 11) Состав и функции систем обработки данных.
- 12) Потоки событий.
- 13) Параллельная обработка данных.
- 14) Конвейерная обработка данных.
- 15) Дисциплины обслуживания заявок со смешанными приоритетами.
- 16) Задача выбора дисциплины обслуживания.
- 17) Задача выбора оптимального быстродействия процессора.
- 18) Многопроцессорные вычислительные комплексы с двухуровневой памятью.
- 19) Статистические, экспериментальные и аналитические методы построения моделей вычислительных систем.
- 20) Марковские модели в теории вычислительных систем.

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СОГЛАСОВАНО ФГБОУ ВО "РГРТУ", РГРТУ, Костров Борис Васильевич, Заведующий кафедрой ЭВМ 24.06.25 10:39 (MSK)

Простая подпись