ПРИЛОЖЕНИЕ 1

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА

Кафедра радиотехнических систем

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по дисциплине (модулю)

Б1.В.ДВ.01 «Средства РЭБ в радионавигации»

Направление подготовки

11.05.01 «Радиоэлектронные системы и комплексы»

Направленность (профиль) подготовки

Радиоэлектронная борьба
Радиоэлектронные системы передачи информации
Радиосистемы и комплексы управления
Радионавигационные системы и комплексы

Уровень подготовки

специалитет

Программа подготовки

специалитет

Квалификация выпускника – инженер

Форма обучения – очная

Оценочные материалы представляют собой совокупность контрольноизмерительных материалов и методов их использования, предназначенных для измерения уровня достижения студентом установленных результатов обучения. Оценочные материалы используются при проведении текущего контроля и промежуточной аттестации студентов.

Основная задача — обеспечить оценку уровня сформированности компетенций, приобретаемых обучающимися в результате изучения дисциплины.

осуществляется Текущий контроль ПО результатам выполнения лабораторного практикума: качеству предварительной подготовки, активности и самостоятельности выполнения экспериментальных исследований, оформлению результатов исследований в форме отчета с подробным анализом полученных результатов. Текущий контроль уровня знаний производится тестовой проверкой подготовки студентов к лабораторным работам. Тест содержит 10 вопросов правильный ответ оценивается одним баллом. Студент, получивший менее 5-ти баллов, к лабораторной работе не допускается. Текущий контроль уровня умений производится в ходе выполнения лабораторных работ, расчетов к лабораторным работам, оформления отчета. В ходе выполнения лабораторных работ также формируются навыки исследования систем радиоавтоматики в среде SimInTech.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуального задания. При оценивании результатов освоения лабораторных работ и индивидуального задания применяется шкала оценки «зачтено — не зачтено». Количество лабораторных работ и их тематика определена рабочей программой дисциплины.

Специальные (основные) оценочные средства в форме разноуровневых задач и заданий не использовались из-за ограниченного бюджета времени у студентов.

Промежуточная аттестация студентов проводится в форме экзамена.

Паспорт оценочных материалов по дисциплине

No	Контролируемые разделы	Код	Вид, метод,
Π/Π	дисциплины	контролируемой	форма
		компетенции (или	контролируемой
		ее части)	компетенции
1	Первичная обработка	ПК-4.1	зачет
	радионавигационной		
	информации в спутниковых		
	PHC		
2	Воздействие шумовой помехи	ПК-4.1	зачет
	на точность решения		
	навигационной задачи в		
	спутниковых РНС		
3	Воздействие шумовой и	ПК-4.1	зачет
	маскирующей помехи на		
	систему вторичной обработки		
	радиолокационной		
	информации		
4	Методы борьбы с активными	ПК-4.1	зачет
	помехами в спутниковых РНС		
5	Пространственная обработка	ПК-4.1	зачет
	сигналов в спутниковых РНС		

Критерии оценивания компетенций (результатов)

При выставлении оценок промежуточной аттестации используются следующие критерии:

Оценка	Критерий		
Отлично	Знание и полное понимание материала		
	экзаменационного билета. Полный ответ на		
	дополнительные вопросы. Умение четко и		
	аргументированно излагать свои мысли.		
Хорошо	Знание и понимание материала экзаменационного		
	билета. Однако, допускаются неточности, не		
	имеющие принципиального характера Достаточно		
	полный ответ на дополнительные вопросы. Умение		
	излагать свои мысли.		
Удовлетворительно	Неполное знание и понимание материала		
_	экзаменационного билета. Поверхностный ответ на		
	дополнительные вопросы. Обязательное знание		

	вопросов по разделам: логарифмические частотные
	характеристики типовых линейных звеньев,
	устойчивость непрерывных и дискретных систем,
	ошибки в статических и астатических системах,
	фазовый портрет идеализированной системы ФАПЧ.
Неудовлетворительн	Большие пробелы в знаниях. Отсутствие ответа
O	хотя бы на один из вопросов по разделам:
	логарифмические частотные характеристики типовых
	линейных звеньев, устойчивость непрерывных и
	дискретных систем, ошибки в статических и
	астатических системах, фазовый портрет
	идеализированной системы ФАПЧ. Невыполнение
	учебного плана по данной дисциплины (не защищены
	лабораторные работы и не сдана индивидуальная
	работа).

Вопросы текущего контроля по лабораторным работам.

Лаб. работа № 1. Исследование дальномерного кода CPHC GPS

- 1. Определение местоположения объекта при использовании псевдодальномерного метода.
 - 2. Взаимосвязь дальномерного кода и навигационного сообщения.
 - 3. Для чего предназначен дальномерный код?
- 4. С какой целью используется селектор фазы при формировании дальномерного кода?
- 5. Дайте определение линии положения, поверхности положения. Приведите примеры.
 - 6. Объясните понятие "геометрический фактор". Приведите примеры.
 - 7. Объясните определение "рабочее созвездие". С какой целью используется?

Лаб. работа № 2. Исследование дальномерного кода СРНС ГЛОНАСС

- 1. Определение местоположения объекта при использовании псевдодальномерного метода.
 - 2. Взаимосвязь дальномерного кода и навигационного сообщения.
 - 3. Для чего предназначен дальномерный код?
- 4. С какой целью используется селектор фазы при формировании дальномерного кода?
- 5. Дайте определение линии положения, поверхности положения. Приведите примеры.
 - 6. Объясните понятие "геометрический фактор". Приведите примеры.
 - 7. Объясните определение "рабочее созвездие". С какой целью используется?
 - 8. Назовите основные характеристики СРНС ГЛОНАСС.

- 9. Назовите основные отличия дальномерных кодов СРНС ГЛОНАСС и GPS.
- 10. Что обозначает понятие "кодовое разделение сигналов"?
- 11. Как идентифицируются спутники GPS?
- 12. Как идентифицируются спутники ГЛОНАСС?

Лаб.работа № 3. Влияние активных помех на приём дальномерного кода в СРНС

- 1. Какими характеристиками можно количественно описать помехоустойчивость HAП?
 - 2. Чем отличается воздействие различных типов помех на НАП?
- 3. Отличается ли помехоустойчивость навигационного приемника в режимах поиска и слежения?
 - 4. Назовите основные способы повышения помехоустойчивости НАП.

Лаб. работа № 4. Импульсные и цифровые системы авторегулирования

Вопросы к промежуточной аттестации (зачёту)

- 1. Местная и глобальные системы координат.
- 2. Позиционный метод определения координат. Измерение пеленга и дальности.
 - 3. Метод счисления пути.
 - 4. Обзорно-сравнительный (корреляционно-экстремальный) метод.
 - 5. Геометрический фактор.
 - 6. Методы измерения скорости в СРНС.
 - 7. Дальность действия СРНС.
 - 8. Условие радиоподавления СРНС.
 - 9. Обобщённая структурная схема приёмника СРНС.
 - 10. Методы решения навигационной задачи в СРНС.
 - 11. Обобщённая структурная схема приёмника СРНС. Канал обнаружения.
- 12. Обобщённая структурная схема приёмника СРНС. Канал слежения за задержкой.
- 13. Обобщённая структурная схема приёмника СРНС. Канал слежения за доплеровским сдвигом частоты.
 - 14. Дальномерный код в системе GPS.
 - 15. Дальномерный код в системе ГЛОНАСС.
 - 16. Навигационное сообщение в системе GPS. Связь с дальномерным кодом.
- 17. Навигационное сообщение в системе ГЛОНАСС. Связь с дальномерным кодом.
 - 18. Шумовая и гармоническая помехи. Описание. Параметры.

- 19. Влияние шумовой помехи на канал обнаружения дальномерного кода в системе GPS.
- 20. Влияние шумовой помехи на канал обнаружения дальномерного кода в системе ГЛОНАСС.
- 21. Влияние гармонической помехи на канал обнаружения дальномерного кода в системе GPS.
- 22. Влияние гармонической помехи на канал обнаружения дальномерного кода в системе ГЛОНАСС.
- 23. Влияние шумовой помехи на каналы слежения за дальномерным кодом в системе GPS.
- 24. Влияние шумовой помехи на каналы слежения за дальномерным кодом в системе ГЛОНАСС.
- 25. Влияние гармонической помехи на каналы слежения за дальномерным кодом в системе GPS.
- 26. Влияние гармонической помехи на каналы слежения за дальномерным кодом в системе ГЛОНАСС.
- 27. Методы борьбы с активными помехами в СРНС. Пространственная обработка.
- 28. Методы борьбы с активными помехами в СРНС. Комплексирование СРНС с другими навигационными системами.

Вопросы для оценки остаточных знаний

- 1. Какой метод определения местоположения используется в СРНС?
- 2. Сколько спутников входят в "рабочее" созвездие?
- 3. Что такое опорная станция в СРНС?
- 4. Для какой цели используется дальномерный код в СРНС?
- 5. Являются ли СРНС глобальными навигационными системами?
- 6. Влияет ли шумовая помеха на эффективность приёма дальномерного кода в приёмнике СРНС?