МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. В.Ф. УТКИНА

Кафедра «Промышленная электроника»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДИСЦИПЛИНЫ

ПРОЕКТИРОВАНИЕ ОПТИКО-ЭЛЕКТРОННЫХ ПРИБОРОВ

Специальность 12.05.01 «Электронные и оптико-электронные приборы и системы специального назначения»

ОПОП

«Оптико-электронные информационно-измерительные приборы и системы»

Квалификация выпускника – инженер Формы обучения – очная

учебно-методических Оценочные материалы ЭТО совокупность заданий, описаний форм материалов (контрольных процедур), предназначенных для оценки качества освоения обучающимися данной профессиональной образовательной дисциплины как части основной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях. При оценивании результатов освоения практических занятий применяется шкала оценки «зачтено — не зачтено». Количество практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением зачета (семестр 8) и экзамена (семестр 9).

Форма проведения зачета и экзамена — письменный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. После выполнения письменной работы обучаемого производится ее оценка преподавателем и, при необходимости, проводится теоретическая беседа с обучаемым для уточнения экзаменационной оценки.

Паспорт оценочных материалов по дисциплине

№ п/п	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия
1	2	3	4
1	Раздел 1 Основные виды проектно-конструкторских работ, методы конструирования, этапы проектно-конструкторской работы	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-3.1-3 ПК-3.1-У ПК-3.1-В	Зачет
2	Раздел 2 Структурные элементы конструкции. Показатели качества ОЭП, обеспечиваемые при проектировании	ПК-1.2-3 ПК-1.2-У ПК-1.2-В ПК-3.1-3 ПК-3.1-У ПК-3.1-В ПК-3.2-3 ПК-3.2-У ПК-3.2-В	Зачет
3	Раздел 3 Методы и способы функционального, структурного и параметрического синтеза ОЭП. Принципы конструирования деталей, соединений деталей, сборочных единиц и функциональных устройств приборов	ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-В ПК-3.1-3 ПК-3.1-У ПК-3.1-В	Зачет
1	Раздел 5 Унификация конструкций, компоновка приборов, защита приборов и окружающей среды, проблемы утилизации ОЭП	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-1.2-3 ПК-1.2-У ПК-1.2-В ПК-3.2-3 ПК-3.2-У ПК-3.2-У	Экзамен
2	Раздел 6 Основы надежности ОЭП. Технологичность приборов, методы повышения качества ОЭП при проектировании	ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-3.1-3 ПК-3.1-У ПК-3.1-В ПК-3.2-3 ПК-3.2-У ПК-3.2-В	Экзамен

3	Раздел 7 Автоматизация проектирования	ПК-2.2-3 ПК-2.2-У ПК-2.2-В ПК-3.1-3 ПК-3.1-У ПК-3.1-В	Экзамен	
---	--	--	---------	--

Критерии оценивания компетенций (результатов)

- 1). Уровень усвоения материала, предусмотренного программой.
- 2). Умение анализировать материал, устанавливать причинно-следственные связи.
- 3). Ответы на вопросы: полнота, аргументированность, убежденность, умение
- 4). Качество ответа (его общая композиция, логичность, убежденность, общая эрудиция)
 - 5). Использование дополнительной литературы при подготовке ответов.

Уровень сформированности знаний, умений и навыков по дисциплине в семестре 8 оценивается по шкале оценок «зачтено» - «не зачтено»:

Оценка «зачтено» выставляется студенту, который прочно усвоил предусмотренный программный материал; правильно, аргументировано ответил на все вопросы, с приведением примеров; показал глубокие систематизированные знания, владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данного курса, других изучаемых предметов.

Обязательным условием выставленной оценки является правильная речь в быстром или умеренном темпе. Дополнительным условием получения оценки «зачтено» могут стать хорошие успехи при выполнении самостоятельной работы.

Оценка «**не зачтено**» выставляется студенту, который не справился с 50% вопросов и заданий билета, в ответах на другие вопросы допустил существенные ошибки. Не может ответить на дополнительные вопросы, предложенные преподавателем. Целостного представления о взаимосвязях, компонентах изучаемой дисциплины у студента нет. Оценивается качество устной и письменной речи, как и при выставлении положительной оценки.

Уровень освоения сформированности знаний, умений и навыков по дисциплине в семестре 9 оценивается в форме бальной отметки:

«Отлично» заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

«Хорошо» заслуживает студент, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

«Удовлетворительно» заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

«Неудовлетворительно» выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Типовые контрольные задания или иные материалы

Вопросы к зачету по дисциплине

- 1. Виды проектно-конструкторских работ. Этапы выполнения проектно-конструкторских работ.
- 2. Методы синтеза оптико-электронных приборов.
- 3. Структура оптико-электронных приборов. Деление сложной конструкции на структурные элементы.
- 4. Структура оптико-электронных приборов. Функциональное назначение оптических и механических узлов.
- 5. Показатели качества оптико-элктронных приборов.
- 6. Показатели надежности. Показатели технологичности.
- 7. Эргономические показатели. Эстетические показатели.
- 8. Показатели стандартизации и унификации.
- 9. Патентно-правовые показатели. Экономические показатели.
- 10. Показатели безопасности. Экологические показатели.
- 11. Методы поиска идей. Мозговой штурм. Синектический метод.
- 12. Методы поиска идей. Морфологический метод. Аналогия.
- 13. Разработка функциональной схемы. Определение и расчет конструктивных характеристик параметров.
- 14. Примеры типовых алгоритмов проектирования оптико-электронных приборов и функциональных устройств.

- 15. Принципы конструирования деталей: рабочие, базовые, соединительные, технологические элементы деталей.
- 16. Основы конструирования деталей оптико-электронных приборов. Структурные элементы детали. Выбор материала, формы и определение размеров.
- 17. Конструирование соединений деталей. Типы соединений и виды замыканий. Пространственное ориентирование деталей соединений.
- 18. Классификация и свойства контактных пар.
- 19. Базирование деталей соединения. Исходные схемы базирования. Геометрическая определенность контактных пар в соединении.
- 20. Принципы соединений оптических деталей с механическими деталями.
- 21. Принципы конструирования узлов и функциональных устройств. принцип Аббе.
- 22. Принципы конструирования узлов и функциональных устройств. Принцип наибольших масштабов преобразования. Принцип отсутствия избыточных связей и местных подвижностей в механизмах приборов.
- 23. Конструирование линз.
- 24. Конструирование зеркал.
- 25. Конструирование призм.
- 26. Конструирование сеток, шкал, лимбов.
- 27. Конструирование светофильтров, экранов, защитных стекол.
- 28. Крепление круглых оптических деталей. Крепление некруглых оптических деталей.

Вопросы к экзамену по дисциплине

- 1. Индивидуальный, базовый и агрегатно-модульный методы унификации изделий.
- 2. Этапы процесса компоновки несущих, преобразовательных, соединительных и вспомогательных частей ОЭП.
- 3. Правила и приемы компоновки.
- 4. Защита приборов от тепловых и климатических воздействий.
- 5. Защита приборов от механических, электромеханических и лучевых воздействий.
- 6. Защита окружающей среды от шумовых, вибрационных, излучающих воздействий ОЭП.
- 7. Понятие надежности. Временные показатели надежности.
- 8. Понятие безотказности оптико-электронных приборов. Способы повышения надежности оптико-электронных приборов.
- 9. Основные единичные показатели безотказности, ремонтопригодности, сохраняемости и долговечности изделий.
- 10. Проектно-конструкторские, технологические и эксплуатационные мероприятия для повышения надежности ОЭП.
- 11. Технологичность оптико-электронных приборов.
- 12. Анализ и критерии оценки технологичности конструкций оптико-электронных приборов.

- 13. Обеспечение психофизиологических и антропологических показателей.
- 14. Структура систем автоматизированного проектирования.
- 15. Структурная схема САПР.
- 16. Синтез при проектировании.
- 17. Анализ при проектировании.
- 18. Обобщенная модель оптико-электронной системы.
- 19. Техническое и программное обеспечение автоматизированного проектирования элементов ОЭП.
- 20. Правила оформления чертежей типовых оптических деталей.

Типовые задания для самостоятельной работы

- 1. Основные критерии оценки качества оптико-электронных приборов.
- 2. Точностные критерии качества оптико-электронных приборов.
- 3. Методы решения нешаблонных задач.
- 4. Блочно-иерархический подход к проектированию.
- 5. Источники излучения, применяемые в оптико-электронных приборах.
- 6. Конструкции узлов источников излучения.
- 7. Анализаторы изображения.
- 8. Оптические узлы оптико-электронных приборов.
- 9. Модуляторы.
- 10. Оптико-механические компенсаторы.
- 11. Узлы диспергирующих элементов
- 12. Сканирующие устройства оптико-электронных приборов
- 13. Оптимизация в процессе проектирования.
- 14. Моделирование как элемент САПР.
- 15. Организация конструкторских работ, выполняемых при проектировании оптико-электронных приборов.
- 16. Конструкции узлов приемников излучения.
- 17. Конструкции фотоприемных устройств.
- 18. Электропривод в оптико-электронных приборах.
- 19. Герметизация в оптико-электронных приборах.
- 20. Экранирование в оптико-электронных приборах.
- 21. Устройства для охлаждения элементов оптико-электронных приборов.
- 22. Защита от тепловых воздействий оптико-электронных приборов, устанавливаемых на космических аппаратах.

Практические задания

№ п/п	№ раздела дисциплины	Тема занятия	Трудоемкость, час
1	1	Энергетические расчеты оптико- электронных приборов	4
2	1	Расчет габаритных параметров приемной системы	4
3	2	Расчет и выбор параметров приемников	4

		излучения	
4	3	Блочно-иерархический подход к проектированию	4
5	5	Особенности конструирования узлов оптико-электронных приборов	4
6	5	Особенности конструирования узлов отражательных элементов, фильтров и волоконно-оптических элементов	4
7	5	Особенности конструирования узлов анализаторов изображения	2
8	5	Конструкторская документация	2
9	6	Особенности конструирования сканирующих устройств оптико-электронных приборов	2
10	6	Особенности расчета фотоприемных устройств	4
11	6	Технологические и технико-экономические требования	2
12	6	Требования к надежности	4
13	7	Сравнительная оценка и выбор вида модуляции	2
14	7	Выбор и расчет полосы пропускания электронного тракта	2
15	7	Основные этапы точностных расчетов	2
16	7	Применение систем автоматизированного проектирования в оптико-электронном приборостроении	2

– Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ПОДПИСАНО **ФГБОУ ВО "РГРТУ", РГРТУ,** Круглов Сергей Александрович, Заведующий кафедрой ПЭЛ

01.09.25 19:51 (MSK)

Простая подпись