МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Телекоммуникаций и основ радиотехники»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

Б1.О.16 «Основы теории цепей»

Направление подготовки 11.03.01 «Радиотехника»

Направленность (профиль) подготовки «Радиотехнические системы локации, навигации и телевидения»

Уровень подготовки Бакалавриат

Квалификация выпускника – бакалавр

Формы обучения – заочная

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретённых обучающимися на практических занятиях и лабораторных работах. При выполнении лабораторных работ применяется система оценки «зачтено – не зачтено». Количество лабораторных работ и их тематика определена рабочей программой дисциплины.

На практических занятиях допускается использование либо системы «зачтено – не зачтено», либо рейтинговой системы оценки, при которой, например, правильно решенная задача оценивается определенным количеством баллов. При поэтапном выполнении учебного плана баллы суммируются. Положительным итогом выполнения программы является определенное количество набранных баллов.

Результат выполнения каждого индивидуального задания (контрольной работы, курсовой работы) должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Дополнительным средством оценки знаний и умений студентов является отчет о проведении лабораторных работ и его защита.

По итогам изучения разделов дисциплины **«Основы теории цепей»** обучающиеся в конце каждого учебного семестра проходят промежуточную аттестации. Форма проведения промежуточной аттестации — экзамен в письменной форме с последующей беседой с экзаменатором. Экзаменационные билеты, перечень вопросов и типовые задачи, выносимые на промежуточную аттестацию, составляются с учётом содержания тем учебной дисциплины и подписываются заведующим кафедрой.

В экзаменационный билет включается два теоретических вопроса и одна задача. В процессе подготовки к ответу экзаменуемый отвечает на теоретические вопросы в письменном виде, включающий в себя определения, выводы формул, рисунки и т.п. Решение задачи также предоставляется в письменном виде.

1. Паспорт оценочных материалов по дисциплине

№ п/п	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия
1	Основные понятия теории цепей. Законы Кирхгофа	ОПК-1, ОПК-2	КР, экзамен
2	Анализ цепей постоянного тока	ОПК-1, ОПК-2	КР, лаб. работа, экзамен
3	Анализ простейших линейных цепей при гармоническом воздействии	ОПК-1, ОПК-2	КР, экзамен
4	Частотные характеристики	ОПК-1, ОПК-2	Экзамен
5	Анализ цепей при периодическом несинусоидальном воздействии	ОПК-1, ОПК-2	Экзамен
6	Резонансные явления в электрических цепях	ОПК-1, ОПК-2	Экзамен
7	Нелинейные электрические цепи	ОПК-1, ОПК-2	Экзамен
8	Основы теории четырехполюсников	ОПК-1, ОПК-2	Экзамен
9	Классический метод расчета переходных процессов	ОПК-1, ОПК-2	КР, лаб. работа, экзамен
10	Операторный метод расчета переходных процессов	ОПК-1, ОПК-2	КР, экзамен
11	Временные характеристики цепей	ОПК-1, ОПК-2	Экзамен
12	Передаточная функция цепи	ОПК-1, ОПК-2	Экзамен
13	Цепи с распределенными параметрами	ОПК-1, ОПК-2	Экзамен

2. Критерии оценивания компетенций (результатов)

- 1. Уровень усвоения материала, предусмотренного программой.
- 2. Умение анализировать материал, устанавливать причинно-следственные связи.
- 3. Качество ответа на вопросы: полнота, аргументированность, убежденность, логичность.
- 4. Содержательная сторона и качество материалов, приведенных в отчетах студента по лабораторным работам, практическим занятиям.
 - 5. Использование дополнительной литературы при подготовке ответов.

Уровень освоения сформированности знаний, умений и навыков по дисциплине оценивается в форме бальной отметки:

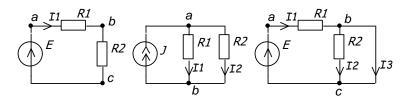
«Отлично» заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для

приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

«Хорошо» заслуживает студент, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

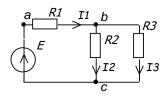
«Удовлетворительно» заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

«Неудовлетворительно» выставляется студенту, не выполневшему и не защитившему лабораторные работы и расчетные задания, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

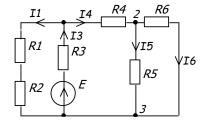

3. Типовые контролирующие материалы

3.1 Вопросы к лабораторным занятиям.

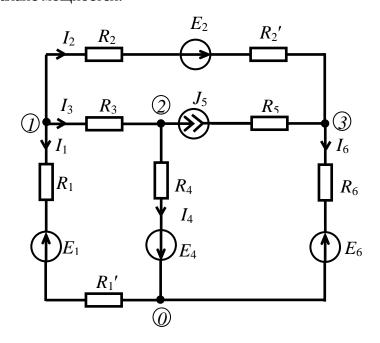
К каждой лабораторной работе прилагается перечень вопросов, на которые необходимо ответить студенту.

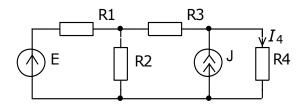

№ работы	Название лабораторной работы и вопросы для контроля
1	Исследование линейных электрических цепей со смешанным соединение элементов 1. Какое соединение элементов называется последовательным, параллельным и смешанным? 2. Записать выражения для входного сопротивления схем, указанных на рис., относительно заданных зажимов.

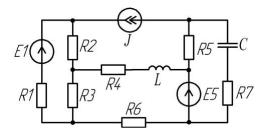
3. Вычислить токи и напряжения в схемах, если E=100 В, $R_1=100$ Ом, $R_2=10$ Ом, J=1 А.

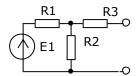


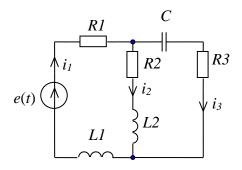
- 6 Исследование переходных процессов в линейных электрических цепях
 - 1. Как формулируются законы коммутации?
 - 2. Что понимают под начальными условиями? Какие из них называются независимыми, а какие зависимыми? Для чего нужны начальные условия и сколько их надо определить?
 - 3. Что понимают под принужденной и свободной составляющей переходного процесса?
 - 4. Какой вид имеет свободная составляющая переходного процесса в зависимости от корней характеристического уравнения?
 - 5. Что называется постоянной времени в цепи первого порядка? Как определить ее по осциллограмме переходного процесса?
 - 6. Какой интервал времени принимают в качестве длительности переходного процесса?
- 3.2 Типовые задания для практической и самостоятельной работы.

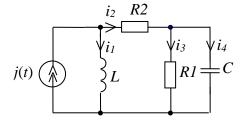

Рассчитать токи и составить баланс мощности R1=5 Om, R2=10 Om, R3=15 Om, E=20 B


Рассчитать токи во всех ветвях схемы $R_i = 100 \text{ Om}, E = 100 \text{ B}$

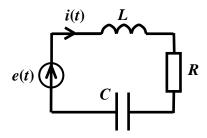

Найти токи во всех ветвях, пользуясь правилами Кирхгофа. Параметры элементов схемы известны. Составить баланс мощностей.


Найти ток в сопротивлении R_4 методом эквивалентного генератора.


Составить систему уравнений по законам Кирхгофа для определения токов в ветвях схемы: для мгновенных значений и в установившемся режиме. Рассчитать токи. Параметры элементов схемы известны.


Найти параметры активного двухполюсника: U_{xx} , I_{x3} и R_{Bx} .

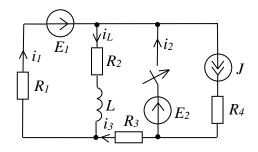
Рассчитать режим в цепи. $e(t) = 28,3 \cos (3000t + 20^{\circ})$ В R1 = 30 Ом R2 = 10 Ом R3 = 5 Ом L1 = 5 мГн L2 = 10 мГн C = 10 мКФ



Рассчитать режим в цепи. $j(t) = 0.1 \sin(2000t - 60^{\circ})$ А R1 = 150 Ом R2 = 50 Ом L = 25 мГн C = 5 мкФ

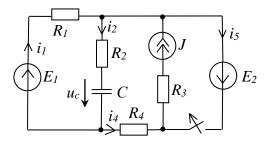
Рассчитать режим в цепи i(t) —? I —? $e(t) = 10 + 25 \cdot \sin(\omega \cdot t + 20^\circ) + 15 \cdot \sin(3\omega \cdot t - 20^\circ)$ В

$$R = 10 \text{ Om}, \ X_L^{(1)} = \omega L = 20 \text{ Om}, \ X_C^{(1)} = \frac{1}{\omega C} = 100 \text{ Om}$$

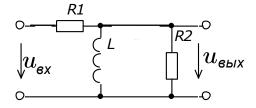


По карте нулей и полюсов рассчитать и построить AYX и ΦYX по заданной передаточной функции:

$$H(p) = \frac{30p}{5p^2 + 200p + 2000}$$


Рассчитать токи после коммутации классическим и операторным методами, построить их графики.

Параметры элементов схемы известны.



Рассчитать токи после коммутации классическим и операторным методами, построить их графики.

Параметры элементов схемы известны.

Получить выражения для передаточной функции, переходной и импульсной характеристики, построить их графики. Построить реакцию цепи на прямоугольный импульс с заданными параметрами.

3.3. Варианты контрольной и курсовых работ.

В процессе изучения дисциплины студенты обязаны самостоятельно выполнить контрольную и курсовую работы по отдельным темам.

Эти работы реализуются в виде типовых вариантов расчётных электрических схем по отдельным темам, которые выполняются студентами самостоятельно во внеаудиторное время.

Контрольная работа «Расчет режима в цепи постоянного тока, расчет установившегося режима в цепи синусоидального тока».

Курсовая работа «Расчет переходных процессов и временных характеристик в линейных электрических цепях».

- 3.4 Вопросы для экзаменов.
- 1. Электрическая цепь, электрическая схема.
- 2. Основные понятия цепей: i, φ , u, p. Элементы электрической цепи.
- 3. Закон Ома.
- 4. Расчет режима в цепях с одним источником энергии (метод свертывания).

Последовательное, параллельное и смешанное соединение элементов. Примеры.

- 5. Законы Кирхгофа; особенности применения в цепях с управляемыми источниками. Баланс мощностей. Примеры.
- 6. Входное сопротивление; особенности расчета входного сопротивления в цепях с управляемыми источниками. Делитель напряжения.
- 7. Метод наложения; особенности применения метода в цепях с управляемыми источниками. Примеры.
- 8. Теорема об активном двухполюснике. Метод эквивалентного генератора; особенности применения метода в цепях с управляемыми источниками. Примеры.
- 9. Линейные цепи синусоидального тока. Описание. Параметры. Мгновенное, среднее и действующее значения синусоидального тока.
- 10. Изображение синусоидальных функций времени. Комплексные сопротивления.
- 11. Символический метод расчета цепей синусоидального тока. Пример.
- 12. Законы цепей в символической форме.
- 13. Синусоидальный ток в элементах R, L, C.
- 14. Векторные и потенциальные диаграммы количественные и качественные. Примеры.
- 15. Мощности в цепи синусоидального тока.
- 16. Частотные характеристики электрических цепей: КЧХ, АЧХ и ФЧХ. Примеры.
- 17. Периодические несинусоидальные токи и напряжения. Действующее, среднее и среднее выпрямленное значения.
- 18. Комплексные сопротивления для различных гармоник.
- 19. Порядок расчета цепей при периодическом несинусоидальном воздействии. Примеры.
- 20. Мощность в цепях несинусоидального тока.
- 21. Анализ несинусоидальных режимов с помощью частотных характеристик.
- 22. Резонансные явления в электрических цепях. Определение резонанса.
- 23. Добротность электрической цепи. Добротность катушки индуктивности. Добротность конденсатора.
- 24. Резонансная частота, характеристическое сопротивление и добротность колебательного контура.
- 25. Частотные характеристики последовательного колебательного контура. Напряжение на индуктивности и емкости вблизи резонансной частоты.
- 26.Полоса пропускания и избирательность колебательного контура.
- 27. Влияние генератора и нагрузки на добротность контура. Частичное подключение нагрузки.
- 28. Резонансный режим, добротность параллельного контура.
- 29. Эквивалентная схема параллельного контура вблизи резонансной частоты.
- 30. Частотные характеристики параллельного контура.
- 31. Влияние генератора и нагрузки на характеристики параллельного контура. Частичное подключение генератора и нагрузки.
- 32. Частотные характеристики контура в широком диапазоне частот.
- 33. Определения нелинейной цепи и нелинейного сопротивления.
- 34. Расчет простейших нелинейных цепей постоянного тока графическим методом. Примеры.
- 35. Расчет цепей постоянного тока с одним нелинейным элементом. Пример.
- 36. Расчет нелинейных цепей методом линеаризации.

- 37. Четырехполюсники. Системы уравнений, эквивалентные схемы, соединения четырехполюсников.
- 38. Законы коммутации. Независимые и зависимые начальные условия.
- 39. Классический метод расчета переходных процессов.
- 40. Постоянная времени и длительность переходного процесса. Качественное построение графиков.
- 41. Подключение RL-цепи к источнику постоянного напряжения. Подключение RC-цепи к источнику постоянного напряжения.
- 42. Операторный метод расчета переходных процессов. Прямое и обратное преобразование Лапласа.
- 43. Операторные схемы замещения двухполюсных элементов электрической цепи.
- 44. Порядок расчета операторным методом. Теорема разложения.
- 45. Переходная характеристика цепи и её применение для расчета реакции цепи на прямоугольный импульс и произвольное воздействие. Пример нахождения h(t) и реакции на прямоугольный импульс.
- 46. Использование RC-цепи в качестве ФВЧ, дифференцирующей и разделительной.
- 47. Использование RC-цепи в качестве ФНЧ, интегрирующей и сглаживающей.
- 48. Импульсная характеристика цепи и её применение для расчета реакции цепи на произвольное воздействие. Связь импульсной и переходной характеристики. Примеры нахождения импульсной характеристики.
- 49. Передаточная функция цепи и ее свойства. Представление передаточной функции с помощью нулей и полюсов на комплексной плоскости.
- 50. Связь передаточной функции с временными и частотными характеристиками цепи. Получение AЧX и ФЧX по расположению нулей и полюсов на комплексной плоскости.
- 51. Понятие о цепях с распределенными параметрами. Дифференциальное уравнение длинной линии.
- 52. Установившийся синусоидальный режим в длинной линии. Понятие о прямой и обратной волнах. Характеристики длинной линии. Линия без искажений. Линия без потерь.
- 53. Уравнение длинной линии в гиперболической форме. Зависимость входного сопротивления отрезка линии от длины и частоты.
- 54. Распределение тока и напряжения вдоль длинной линии (режим смешанных волн). Режимы бегущих и стоячих волн. Коэффициент стоячей и бегущей волны.
- 55. Коэффициент отражения и его применение для анализа распределения тока и напряжения вдоль линии. Типовые режимы работы длинной линии.