МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Рязанский государственный радиотехнический университет»

КАФЕДРА КОСМИЧЕСКИЕ ТЕХНОЛОГИИ

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

Б1.В.09 «Цифровая обработка сигналов»

Направление подготовки

02.03.01 Математика и компьютерные науки

ОПОП академического бакалавриата «Математическое обеспечение космических информационных систем»

Квалификация (степень) выпускника — бакалаврФорма обучения — очная

Оценочные материалы – это совокупность учебно-методических материалов(контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях и лабораторных работах. При оценке результатов освоения практических занятий и лабораторных работ применяется шкала оценки «зачтено – не зачтено». Количество лабораторных и практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением теоретического зачета.

Форма проведения теоретического зачета – письменный ответ по билетам,

сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается один теоретический вопрос. После выполнения письменной работы обучаемого производится ее оценка преподавателем и, при необходимости, проводится теоретическая беседа с обучаемым для уточнения оценки. Оценивание знаний производится по системе «зачтено – не зачтено».

Паспорт фонда оценочных средств по дисциплине

№	Контролируемые разделы (темы)	Код	Вид, метод, форма
п/п	дисциплины	контролируемой	оценочного мероприятия
		компетенции (или	
		её части)	
1	Основы анализа сигналов	ПК-3	зачет
2	Аналоговые системы	ПК-3, ПК-7	зачет
3	Дискретные сигналы	ПК-3, ПК-7	зачет
4	Дискретные системы	ПК-3, ПК-7	зачет
5	Спектральный анализ	ПК-3, ПК-7	зачет
6	Проектирование дискретных фильтров	ПК-3, ПК-7	зачет
7	Эффекты квантования в цифровых	ПК-3, ПК-7	зачет
	системах		
8	Модуляция и демодуляция	ПК-3, ПК-7	зачет

Шкала оценки сформированности компетенций

В процессе оценки сформированности знаний, умений и навыков обучающегося по дисциплине, производимой на этапе промежуточной аттестации в форме теоретического зачета, используется оценочная шкала «зачтено – не зачетено»:

Оценка «зачтено» выставляется обучающемуся, который прочно усвоил предусмотренный программный материал; правильно, аргументировано ответил на все вопросы, с приведением примеров; показал глубокие систематизированные знания, владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данного курса, других изучаемых предметов; без ошибок выполнил практическое задание.

Обязательным условием выставленной оценки является правильная речь в быстром или умеренном темпе. Дополнительным условием получения оценки «зачтено» могут стать хорошие успехи при выполнении самостоятельной и лабораторной работы, систематическая активная работа на практических занятиях.

Оценка «не зачтено» выставляется обучающемуся, который не справился с 50% вопросов и заданий при прохождении тестирования, в ответах на другие вопросы допустил существенные ошибки. Не может ответить на дополнительные вопросы, предложенные преподавателем. Целостного представления о взаимосвязях элементов курса и использования предметной терминологии у обучающегося нет. Оценивается качество устной и письменной речи, как и при выставлении положительной оценки.

Типовые контрольные задания или иные материалы

Типовые задания для лабораторных работ

- 1) Корреляционный анализ. Комплексная огибающая.
- 2) Характеристики линейных систем. Способы описания линейных систем.
- 3) Аналоговые, цифровые и дискретные сигналы. Аналого-цифровое и цифро-аналоговое преобразование.
- 4) Преобразование случайного сигнала в дискретной системе. Дискретные фильтры.
- 5) Алгоритмы быстрого преобразования Фурье.
- 6) Цифровая фильтрация сигналов.
- 7) Процесс квантования.
- 8) Способы модуляции, используемые при передачи цифровой информации.

Типовые задания для самостоятельной работы

- 1) Энергия и мощность сигнала. Ряд Фурье. Преобразование Фурье. Случайные сигналы.
- 2) Преобразование случайного процесса в линейной системе.
- 3) Спектр дискретного сигнала. Теорема Котельникова. Z-преобразование. Дискретные случайные сигналы.
- 4) Дискретные фильтры. Формы реализации дискретных фильтров.
- 5) Спектр дискретного случайного процесса.
- 6) Эффекты квантования в цифровых фильтрах.
- 7) Прямые методы синтеза. Синтез нерекурсивных фильтров.

Вопросы к зачету по дисциплине

- 8.7.1. Классификация сигналов.
- 8.7.2. Энергия и мощность сигнала.
- 8.7.3. Ряд Фурье.

8.7.4.	Преобразование Фурье.
8.7.5.	Корреляционный анализ.
8.7.6.	Комплексная огибающая.
8.7.7.	Случайные сигналы.
8.7.8.	Классификация аналоговых систем.
8.7.9.	Характеристики линейных систем.
8.7.10.	Преобразование случайного процесса в линейной системе.
8.7.11.	Способы описания линейных систем.
8.7.12.	Аналоговые, цифровые и дискретные сигналы.
8.7.13.	Аналого-цифровое и цифро-аналоговое преобразование.
8.7.14.	Спектр дискретного сигнала.
8.7.15.	Теорема Котельникова.
8.7.16.	Z-преобразование.
8.7.17.	Дискретные случайные сигналы.
8.7.18.	Способы описания дискретных систем.
8.7.19.	Преобразование случайного сигнала в дискретной системе.
8.7.20.	Дискретные фильтры.
8.7.21.	Формы реализации дискретных фильтров.
8.7.22.	Дискретное преобразование Фурье.
8.7.23.	Алгоритмы быстрого преобразования Фурье.
8.7.24.	Спектр дискретного случайного процесса.
8.7.25.	Метод билинейного z-преобразования.
8.7.26.	Метод инвариантной импульсной характеристики.
8.7.27.	Прямые методы синтеза.
8.7.28.	Синтез нерекурсивных фильтров.
8.7.29.	Формы представления чисел. Процесс квантования.
8.7.30.	Эффекты квантования в цифровых фильтрах.
8.7.31.	Способы модуляции, используемые при передачи цифровой информации.

Составил

д.т.н., проф. кафедры КТ

Е.П. Васильев

Заведующий кафедрой КТ, д.т.н., профессор

С.И. Гусев

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СОГЛАСОВАНО **ФГБОУ ВО "РГРТУ", РГРТУ,** Гусев Сергей Игоревич, Проректор по научной работе и инновациям

22.07.25 14:37 (MSK)

Простая подпись