МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА

Кафедра «Радиоуправления и связи»

СОГЛАС	OBAHO
Π	TAN A A

Директор ИМиА

_ О.А. Бодров 2020 г. Проректор по РОП и МД А.В. К

УТВЕРЖДАЮ

_ А.В. Корячко 2020 г.

Руководитель ОПОП

С.Н. Кириллов 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

К.М.01.ДВ.03.01 «Многокритериальный синтез радиосигналов и устройств обработки в системах, сетях и устройствах телекоммуникаций»

Направление подготовки 11.06.01 Электроника, радиотехника и системы связи

ОПОП подготовки научно-педагогических кадров в аспирантуре «Системы, сети и устройства телекоммуникаций»

Квалификация (степень) выпускника – Исследователь. Преподаватель – исследователь Формы обучения – заочная

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы аспирантуры

Рабочая программа по дисциплине «Многокритериальный синтез сигналов и устройств обработки в системах, сетях и устройствах телекоммуникаций» является составной частью основной профессиональной образовательной программы (ОПОП) аспирантуры «Системы, сети и устройства телекоммуникаций», разработанной в соответствии с ФГОС ВО по направлению подготовки 11.06.01 Электроника, радиотехника и системы связи (уровень аспирантуры), утвержденным приказом Минобрнауки России от 30.10.2014 г. № 1403.

Цель дисциплины «Многокритериальный синтез сигналов и устройств обработки в системах, сетях и устройствах телекоммуникаций» – являются:

- теоретическая: изучение методов многокритериального синтеза сигналов и устройств обработки в условиях априорной неопределенности. В результате изучения дисциплины должны сформироваться знания, умения и навыки, позволяющие осуществлять вычисление коэффициентов цифровых фильтров и повышать эффективность цифровых устройств обработки сигналов по нескольким показателям качества;
- практическая: овладеть на основе многокритериального подхода методами синтеза реализуемых сигналов и устройств обработки с учетом различных мешающих факторов, в интересах повышения качества функционирования и помехоустойчивости радиотехнических систем.

Перечень планируемых результатов обучения по дисциплине

Коды компетенций	Содержание компетенций				
ПК-3	способностью разрабатывать новые сигналы,				
	модемы, кодеки, обеспечивающих высокую				
	надежность обмена информацией в условиях				
	воздействия внешних и внутренних помех				
ПК-4	способностью разрабатывать новые методы				
	обработки сигналов в системах, сетях и				
	устройствах телекоммуникаций				

<u>Знать:</u> приемы и способы отбора информации в сфере профессиональной деятельности.

<u>Уметь:</u> систематизировать и структурировать необходимую информацию для формирования ресурсно-информационной базы для решения профессиональных задач.

<u>Владеть</u>: способами использования информационной базы для решения профессиональных задач образования.

<u>Знать:</u> приемы и способы отбора информации в сфере профессиональной деятельности.

<u>Уметь:</u> систематизировать и структурировать необходимую информацию для формирования ресурсно-информационной базы для решения профессиональных задач.

Владеть: способами использования информационной базы для решения профессиональных задач образования.

<u>Знать</u>: вариативные и инновационные концепции, модели и технологии образовательного процесса и применять их на практике.

<u>Уметь:</u> организовывать и проводить экспериментальные испытания

<u>Владеть</u>: современными методами научного исследования в предметной сфере, способами осмысления и критического анализа научной информации; навыками совершенствования и развития своего научного потенциала.

Знать: приемы и способы работы с современным оборудованием и приборами

<u>Уметь:</u> систематизировать и структурировать необходимую информацию для эксплуатации современного оборудования и приборов

<u>Владеть</u>: современными методами научного исследования в предметной сфере.

<u>Знать:</u> приемы и способы отбора информации в сфере профессиональной деятельности.

Уметь: систематизировать и структурировать необходимую информацию для формирования ресурсно-информационной базы для решения профессиональных задач.

<u>Владеть</u>: современными и перспективными компьютерными и информационными технологиями.

Знать: приемы и способы отбора информации в сфере профессиональной деятельности.

<u>Уметь:</u> использовать современные технологии проектирования для разработки конкурентоспособных энергетических установок с прогрессивными показателями качества

<u>Владеть</u>: современными и перспективными компьютерными и информационными технологиями.

Знать: современные достижения науки

<u>Уметь</u>: использовать программные средства для обработки данных в соответствии с поставленной задачей

<u>Владеть:</u> информационными технологиями обработки данных в соответствии с поставленной задачей

1. Место дисциплины в структуре ОПОП аспирантуры

Дисциплина «Многокритериальный синтез сигналов и устройств их обработки» является обязательной, относится к вариативной части блока №1 дисциплин основной профессиональной образовательной программы академической аспирантуры «Системы, сети и устройства телекоммуникаций» по направлению подготовки 11.06.01 Электроника, радиотехника и системы связи ФГБОУ ВО «РГРТУ».

Дисциплина «Многокритериальный синтез сигналов и устройств их обработки» относится к базовой части профессионального цикла и читается в 6 семестре. В результате изучения дисциплины студент должен:

Знать: основные методы многокритериального синтеза сигналов;

Уметь: повышать эффективность цифровых устройств обработки сигналов по нескольким показателям качества;

Владеть: методами синтеза реализуемых сигналов и устройств обработки с учетом мешающих факторов.

2. Объем дисциплины и виды учебной работы

Общая трудоемкость (объем) дисциплины составляет 2 зачетные единицы (2 ЗЕ), 72 часа.

Вид учебной работы		
	Очная форма	Заочная форма
Общая трудоемкость дисциплины, в том	72	72
числе:		
Контактная работа обучающихся с	36	12
преподавателем (всего), в том числе:		
Лекции	24	6
Лабораторные работы		
Практические занятия	12	6
Самостоятельная работа обучающихся	36	60
(всего), в том числе:		
Курсовая работа / курсовой проект	-	-
Экзамены и консультации		-
Консультации в семестре	5	10
Иные виды самостоятельной работы	31	50
Вид промежуточной аттестации обучающихся:	Зачет	Зачет

3. Содержание дисциплины

4.1 Разделы дисциплины и виды занятий

№ п/п	Раздел дисциплины		ПЗ
		И	
1	Введение	*	*
2	Обоснование многокритериального подхода к	*	*
	синтезу сигналов и устройств обработки		•
3	Многокритериальный синтез спектральной	*	
	плотности мощности сигналов при заданных		*
	устройствах обработки		
4	Многокритериальный синтез сигналов и устройств	*	*
	обработки в условиях априорной неопределенности.		·
5	Регуляризация решений задач многокритериального	*	*
	синтеза сигналов		•
6	Синтез и обработка фазоманипулированных	*	
	сигналов по многим показателям качества и		*
	критериям приближения		
7	Вычисление коэффициентов цифровых фильтров по	*	*
	нескольким показателям качества		·

8	Повышение эффективности цифровых устройств	*	
	обработки речевых сигналов на основе методов		*
	многокритериальной оптимизации		

4.2 Содержание разделов дисциплины

1 Введение

- 2 Обоснование многокритериального подхода к синтезу сигналов и устройств обработки
- 2.1Описание основных показателей качества и особенности вариационного метода синтеза сигналов и устройств обработки.
- 2.2Представление задачи многокритериального синтеза сигналов и устройств обработки
- 2.3Методы решения задач многокритериального синтеза сигналов и устройств обработки
- 3 Многокритериальный синтез спектральной плотности мощности сигналов при заданных устройствах обработки
 - 3.1Многокритериальный синтез СПМ сигналов с максимальной избирательностью на выходе согласованного фильтра
 - 3.2Многокритериальный синтез СПМ сигналов с максимальной избирательностью при минимизации уровня боковых лепестков отклика согласованного фильтра
 - 3.3Многокритериальный синтез СПМ сигналов с максимальной избирательностью на выходе согласованного фильтра при заданном коэффициенте подавления узкополосных помех
 - 3.4Многокритериальный синтез СПМ сигналов с максимальной избирательностью при минимизации длительности отклика согласованного фильтра
 - 3.5Многокритериальный синтез СПМ сигналов с максимальной избирательностью на выходе согласованного фильтра при минимизации коэффициента частотно-временной связи
 - 3.6Многокритериальный синтез СПМ сигналов с максимальной избирательностью при минимизации скорости изменения боковых лепестков отклика согласованного фильтра
 - 3.7Многокритериальный синтез сигналов с максимально неопределенной спектральной плотностью мощности и минимальной эффективной шириной спектра на выходе согласованного фильтра
 - 3.8Многокритериальный синтез СПМ сигналов, обеспечивающих потенциальную точность оценки времени запаздывания при наличии пассивных помех
 - 3.9Многокритериальный синтез СПМ сигналов, обеспечивающих максимальное отношение сигнал-шум+помеха при минимальной эффективной ширине спектра
- 4 Многокритериальный синтез сигналов и устройств обработки в условиях априорной неопределенности.

- 4.1 Теоретико-игровой метод многокритериального синтеза СПМ сигналов при неизвестном спектре помех
- 4.2Многокритериальный синтез систем оптимальной линейной фильтрации в условиях конфликтного взаимодействия
- 4.3Многокритериальный синтез робастного к искажениям сигнала оптимального по критерию максимум отношения сигнал-шум линейного фильтра
- 4.4Многокритериальный синтез робастного к искажениям сигнала оптимального по критерию минимума средней квадратической ошибки линейного фильтра
- 4.5Совместный синтез сигнала и фильтра по критериям максимума отношения сигнал-шум+помеха и минимума эффективной ширины спектра
- 4.6Многокритериальный синтез оптимального базиса обобщенных рядов Фурье, робастного к искажениям
- 4.7Многокритериальный синтез оптимальной весовой функции при спектрально-корреляционном анализе априорно неизвестных сигналов

5 Регуляризация решений задач многокритериального синтеза сигналов

- 5.1Регуляризация решений задачи многокритериального синтеза СПМ сигнала
- 5.2Регуляризация решений задачи многокритериального синтеза малобазовых НЧМ сигналов
- 5.3 Регуляризация решений задачи многокритериального синтеза сверхширокополосных сигналов
- 5.4Регуляризация решений задачи многокритериального синтеза СПМ сигналов при обнаружении пространственно распределенных объектов

6 Синтез и обработка фазоманипулированных сигналов по многим показателям качества и критериям приближения

- 6.1 Комбинированный критерий приближения при синтезе ФМН сигналов по автокорреляционной функции
- 6.2Комбинированный критерий приближения при синтезе ФМН сигналов по спектральной плотности мощности
- 6.3Синтез ФМН сигналов по многим показателям качества
- 6.4Синтез последовательностей быстрого поиска по косвенным показателям качества
- 6.5Многокритериальный синтез модулирующей функции ограниченных по полосе ФМН сигналов
- 6.6Регуляризация решений задачи многокритериального синтеза модулирующей функции ФМН сигналов
- 6.7Многокритериальный синтез коэффициентов весового фильтра сжатия фмн сигналов
- 6.8Регуляризация решений задачи многокритериального синтеза коэффициентов весового фильтра сжатия ФМН сигналов
- 7 Вычисление коэффициентов цифровых фильтров по нескольким показателям качества

- 7.1Оптимальная весовая функция при синтезе нерекурсивных фильтров методом "окна"
- 7.2Аппроксимация переходной полосы частотной характеристики нерекурсивного фильтра оптимальной весовой функцией
- 7.3Вычисление коэффициентов регулируемых нерекурсивных фильтров по методу "окна"
- 7.4Комбинированный критерии оптимальности нерекурсивных фильтров
- 7.5Оценивание сигналов на фоне шумов при комбинированном критерии оптимальности нерекурсивных фильтров
- 7.6Комбинированный критерий оптимальности рекурсивных фильтров
- 8 Повышение эффективности цифровых устройств обработки речевых сигналов на основе методов многокритериальной оптимизации
 - 8.1Оптимальная весовая обработка при оценке коэффициентов предсказания в кодеках АДИКМ
 - 8.2Комбинированный критерий оптимальности коэффициентов предсказания в кодеках АДИКМ
 - 8.3Снижение вычислительных затрат в кодеках АДИКМ
 - 8.4Восстановление речевых сигналов на выходе ортогональных кодеков
 - 8.5Робастный к вариабельности речи алгоритм распознавания фонем на основе ортогональных разложений

4.4. Разделы дисциплины (модуля) и трудоемкость по видам учебных занятий (в академических часах).

Примерный тематический план включает вариативные формы учебного процесса с учетом специфики научной квалификации магистрантов: лекции, научно-практические конференции и семинары различного уровня, практикумы, научные исследования, самостоятельную работу, творческие проекты и др.

Заочная форма обучения

№ п/п	Тема	Контактная работа обучающихся с преподавателем			
		всего	лекции	Семи- нары, практические занятия	другие виды
1	2	4	5	6	7
1	Введение	0,5	0,5		
2	Обоснование многокритериального подхода к синтезу сигналов и устройств обработки	0,5	0,5		
3	Многокритериальный синтез	1,5	0,5	1	

	спектральной плотности			
	мощности сигналов при заданных			
	устройствах обработки			
4	Многокритериальный синтез	1,5	0,5	1
	сигналов и устройств обработки в			
	условиях априорной			
	неопределенности.			
5	Регуляризация решений задач	2	1	1
	многокритериального синтеза			
	сигналов			
6	Синтез и обработка	2	1	1
	фазоманипулированных сигналов			
	по многим показателям качества			
	и критериям приближения			
7	Вычисление коэффициентов	2	1	1
	цифровых фильтров по			
	нескольким показателям качества			
8	Повышение эффективности	2	1	1
	цифровых устройств обработки			
	речевых сигналов на основе			
	методов многокритериальной			
	оптимизации			

Очная форма обучения

№	Тема		Контактная работа			
п/п		обучающихся				
			с преподавателем			
		всего	лекции	Семи-	другие	
				нары,	виды	
				практические		
				занятия		
1	2	4	5	6	7	
1	Введение	4	1	2		
2	Обоснование	8	1	6		
	многокритериального подхода к					
	синтезу сигналов и устройств					
	обработки					
3	Многокритериальный синтез	8	2	6		
	спектральной плотности					
	мощности сигналов при заданных					
	устройствах обработки					
4	Многокритериальный синтез	10	2	8		
	сигналов и устройств обработки в					
	условиях априорной					

	неопределенности.				
5	Регуляризация решений задач	10	2	8	
	многокритериального синтеза				
	сигналов				
6	Синтез и обработка	10	2	8	
	фазоманипулированных сигналов				
	по многим показателям качества				
	и критериям приближения				
7	Вычисление коэффициентов	10	2	8	
	цифровых фильтров по				
	нескольким показателям качества				
8	Повышение эффективности	10	2	8	
	цифровых устройств обработки				
	речевых сигналов на основе				
	методов многокритериальной				
	оптимизации				

4. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

- 1. Кириллов С.Н., Баке А.В. Оптимизация сигналов в радиотехнических системах: Учеб. пособие/РГРТА. Рязань. 1997.- 80с.
- 2. Кириллов С.Н., Бодров О.А., Макаров Д.А. Стандарты и сигналы средств подвижной радиосвязи: Учеб. пособие/РГРТА. Рязань. 1999.-80с.
- 3. Кириллов С.Н., Поспелов А.В. Дискретные сигналы в радиотехнических системах: Учеб.пособие/ РГРТА. Рязань. 2003 -80 с.

5. Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

Фонд оценочных средств приведен в Приложении к рабочей программе дисциплины (см. документ «Оценочные материалы по дисциплине «Многокритериальный синтез сигналов и устройств обработки в системах, сетях и устройствах телекоммуникаций»).

6. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

А) основная литература

1. Токарев В.В. Методы оптимальных решений. Многокритериальность. Динамика. Неопределенность Том 2 [Электронный ресурс]: учебное

- пособие/ Токарев В.В.— Электрон. текстовые данные.— М.: ФИЗМАТЛИТ, 2011.— 415 с.
- 2. Соколов А.В. Методы оптимальных решений. Том 1. Общие положения. Математическое программирование [Электронный ресурс]/ Соколов А.В., Токарев В.В.— Электрон. текстовые данные.— М.: ФИЗМАТЛИТ, 2012.— 562 с.
- 3. Золотарев А.А. Методы оптимизации распределительных процессов [Электронный ресурс]/ Золотарев А.А.— Электрон. текстовые данные.— М.: Инфра-Инженерия, 2014.— 160 с
 - Б) дополнительная литература
- 4. Вакман Д.Е., Седлецкий Р.М. Вопросы синтеза радиолокационных сигналов. М.: Сов. радио, 1973.
- 5. Гантмахер В. Е., Быстров Н. Е., Чеботарев Д. В. Шумоподобные сигналы. Анализ, синтез, обработка. СПб.: Наука и техника, 2005. 400 с.
- 6. Гуткин Л.С. Оптимизация радиоэлектронных устройств по совокупности показателей качества. М.: Сов. радио, 1975. 368 с.
- 7. Гуткин Л.С. Проектирование радиосистем и радиоустройств: Учеб. пособие для вузов. М.: Радио и связь, 1986. 288 с.
- 8. Кириллов С.Н., Баке А.В. Оптимизация сигналов в радиотехнических системах: Учеб. пособие/РГРТА. Рязань. 1997.- 80с.
- 9. Кириллов С.Н., Бодров О.А., Макаров Д.А. Стандарты и сигналы средств подвижной радиосвязи: Учеб. пособие/РГРТА. Рязань. 1999.-80с.
- 10. Кириллов С.Н., Поспелов А.В. Дискретные сигналы в радиотехнических системах: Учеб. пособие/ РГРТА. Рязань. 2003 -80 с.
- 11. Ungerboeck G. Trellis-Coded Modulation with Redundant Signal Sets. Part I: Introduction // IEEE Com. Magazine, vol. 25, №2, P. 5-11
- 12.G. D. Forney, R. G. Gallager, G. R. Lang, F. M. Longstaff and S. U. Qureshi, "Efficient Modulation for Band-Limited Channels," IEEE J. Select. Areas Commun., vol. 2, no. 5, pp. 632–647, Sep. 1984.
- 13. Седлецкий Р.М. Синтез сложных частотно-модулированных сигналов уточненным методом стационарной фазы // Радиотехника и электроника. 1986. Т.31, № 11. с.2198-2200.
- 14.Sung-Joon Park and Moo-Kwang Byeon. Irregularly Distributed Triangular Quadrature Amplitude Modulation // 19th IEEE Intern. Symp. Personal, Indoor Mobile Radio Commun. (PIMRC'08). Режим доступа: http://202.194.20.8/proc/PIMRC2008/content/papers/1569106953.pdf.

7. Перечень ресурсов информационно—телекоммуникационной сети Интернет, необходимых для освоения дисциплины

Обучающимся предоставлена возможность индивидуального доступа к следующим электронно-библиотечным системам.

- 1. Электронно-библиотечная система «Лань», режим доступа с любого компьютера РГРТУ без пароля. URL: https://e.lanbook.com/
- 2. Электронно-библиотечная система «IPRbooks», режим доступа с любого компьютера РГРТУ без пароля, из сети интернет по паролю. URL: https://iprbookshop.ru/.

8. Методические указания для обучающихся по освоению дисциплины

Перед началом проведения лабораторных работ необходимо ознакомится с методическими указаниями к лабораторным работам. Обязательное условие успешного усвоения курса — большой объём самостоятельно проделанной работы.

Рекомендуется следующим образом организовать время, необходимое для изучения дисциплины:

Изучение конспекта лекции в тот же день, после лекции – 10-15 минут.

Изучение теоретического материала по учебнику и конспекту – 1 час в неделю в ходе подготовки к практическому занятию и теоретическому зачету.

Изучение методических указаний к лабораторной работе — 2 часа перед выполнением лабораторной работы и в ходе разработки проекта и 2 часа для оформления отчета, отладки проекта и подготовки к сдаче работы.

Перед выполнением практического занятия и лабораторной работы необходимо внимательно ознакомиться с заданием. Желательно заранее выполнить подготовку проекта в инструментальной среде, чтобы на практическом или лабораторном занятии осталось время для сдачи работы.

Перед сдачей работы рекомендуется ознакомиться со списком вопросов изучаемой темы и попытаться самостоятельно на них ответить, используя конспект лекций и рекомендуемую литературу. Таким образом, вы сможете сэкономить свое время и время преподавателя.

Кроме чтения учебной литературы из обязательного списка рекомендуется активно использовать информационные ресурсы сети Интернет по изучаемой теме. Ответы на многие вопросы, связанные с разработкой программ на объектно-ориентированном языке, использованием языковых конструкций, принципов ООП, освоением инструментальной среды, вы можете получить в сети Интернет, посещая соответствующие информационные ресурсы.

Самостоятельное изучение тем учебной дисциплины способствует:

- закреплению знаний, умений и навыков, полученных в ходе аудиторных занятий;
- углублению и расширению знаний по отдельным вопросам и темам дисциплины;
- освоению умений прикладного и практического использования полученных знаний в области объектно-ориентированного программирования;

– получению навыков проектирования и разработки программ в инструментальной среде объектно-ориентированного программирования.

Самостоятельная работа как вид учебной работы может использоваться на лекциях, практических и лабораторных занятиях, а также иметь самостоятельное значение — внеаудиторная самостоятельная работа обучающихся — при подготовке к лекциям, практическим занятиям, а также к теоретическому зачету.

Основными видами самостоятельной работы по дисциплине являются:

- самостоятельное изучение отдельных вопросов и тем данной дисциплины;
- выполнение практического или лабораторного задания: составление проекта программы для очередного практического или лабораторного занятия;
 - выполнение домашнего задания: тестирование и отладка программы;
- подготовка к защите практического или лабораторного задания, оформление отчета.

9. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине

Перечень лицензионного программного обеспечения:

- 1. Операционная система Windows XP (Microsoft Imagine, номер подписки 700102019, бессрочно)
- 2. Kaspersky Endpoint Security

10. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Для освоения дисциплины кафедра РУС имеет специализированную лабораторию, оснащенную компьютерами со специальным программным обеспечением, необходимым для проведения лабораторных работ, в частности:

- типовыми цифровыми системами передачи отечественного производства;
- полным комплектом контрольно-измерительной аппаратуры.

Программа составлена в соответствии с Государственным образовательным стандартом высшего профессионального образования для подготовки аспирантов по направлению подготовки 11.06.01 Электроника, радиотехника и системы связи, ООП 2 «Системы, сети и устройства телекоммуникаций»

Программу составил к.т.н., доцент кафедры РУС	С.Н. Кириллов
Программа рассмотрена и одобрена на заседани	и кафедры РУС
Зав. кафедрой РУС	С.Н.Кириллов