Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Рязанский государственный радиотехнический университет имени В.Ф. Уткина

Кафедра «Космические технологии»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

Б1.В.11 «Математическое обеспечение конструкторско-технологического проектирования электронных средств»

Направление подготовки - 02.03.01 «Математика и компьютерные науки»

ОПОП академического бакалавриата «Математическое обеспечение космических информационных систем»

Квалификация (степень) выпускника — бакалавр Форма обучения — очная

1 ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы — это совокупность учебно-методических материалов (практических заданий, описаний форм и процедур проверки), предназначенных для оценки качества освоения обучающимися данной дисциплины как части ОПОП.

Цель – оценить соответствие знаний, умений и владений, приобретенных обучающимся в процессе изучения дисциплины, целям и требованиям ОПОП в ходе проведения промежуточной аттестации.

Основная задача – обеспечить оценку уровня сформированности компетенций.

Контроль знаний обучающихся проводится в форме промежуточной аттестации.

Промежуточная аттестация проводится в форме зачета, экзамена и защиты курсового проекта. Форма проведения зачета и экзамена - тестирование, письменный опрос по теоретическим вопросам и выполнение практического задания.

2 ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Сформированность каждой компетенции (или ее части) в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

Уровень освоения компетенций, формируемых дисциплиной:

Описание критериев и шкалы оценивания тестирования:

Шкала оценивания	Критерий
3 балла	уровень усвоения материала, предусмотренного программой:
(эталонный уровень)	процент верных ответов на тестовые вопросы от 85 до 100%
2 балла	уровень усвоения материала, предусмотренного программой:
(продвинутый уровень)	процент верных ответов на тестовые вопросы от 70 до 84%
1 балл	уровень усвоения материала, предусмотренного программой:
(пороговый уровень)	процент верных ответов на тестовые вопросы от 50 до 69%
0 баллов	уровень усвоения материала, предусмотренного программой:
	процент верных ответов на тестовые вопросы от 0 до 49%

Описание критериев и шкалы оценивания теоретического вопроса:

Шкала оценивания	Критерий
3 балла	выставляется студенту, который дал полный ответ на вопрос,
(эталонный уровень)	показал глубокие систематизированные знания, смог привести
	примеры, ответил на дополнительные вопросы преподавателя
2 балла	выставляется студенту, который дал полный ответ на вопрос,
(продвинутый уровень)	но на некоторые дополнительные вопросы преподавателя отве-
	тил только с помощью наводящих вопросов
1 балл	выставляется студенту, который дал неполный ответ на вопрос
(пороговый уровень)	в билете и смог ответить на дополнительные вопросы только с
	помощью преподавателя
0 баллов	выставляется студенту, который не смог ответить на вопрос

Шкала оценивания	Критерий
3 балла	Задача решена верно
(эталонный уровень)	
2 балла	Задача решена верно, но имеются неточности в логике решения
(продвинутый уровень)	
1 балл	Задача решена верно, с дополнительными наводящими вопро-
(пороговый уровень)	сами преподавателя
0 баллов	Задача не решена

Описание критериев и шкалы оценивания курсовой работы

Шкала оценивания	Критерий	
Оценка «отлично»	Курсовая работа (КР) выполнена в полном объеме, нет замеча-	
(эталонный уровень)	ний по разработке алгоритмов и программ, работа выполнена	
	самостоятельно, пояснительная записка к КР оформлена акку-	
	ратно, соблюдались сроки сдачи и защиты КР, при защите КР	
	студент ответил на все предложенные вопросы	
Оценка «хорошо»	Курсовая работа выполнена в полном объеме, присутствуют	
(продвинутый уровень)	незначительные замечания по разработке алгоритмов и про-	
	грамм, проект выполнен самостоятельно, пояснительная запис-	
	ка к КР оформлена аккуратно, соблюдались сроки сдачи и за-	
	щиты КР, при защите КР студент ответил не на все предло-	
	женные вопросы (правильных ответов не менее 75%)	
Оценка	Курсовая работа выполнена в полном объеме, присутствуют	
«удовлетворительно»	ошибки при разработке алгоритмов и программ, КР выполнена	
(пороговый уровень)	самостоятельно, по оформлению пояснительной записки к КР	
	имеются замечания, частично соблюдались сроки сдачи и за-	
	щиты КР, при защите КР студент ответил не на все предло-	
	женные вопросы (правильных ответов не менее 50%)	
Оценка	Курсовая работа выполнен не в полном объеме, присутствуют	
«неудовлетворительно»	грубые ошибки при разработке алгоритмов и программ, КР	
	выполнена не самостоятельно, по оформлению пояснительной	
	записки к КР имеются замечания, не соблюдались сроки сдачи	
	и защиты КР, при защите КР студент ответил не на все пред-	
	ложенные вопросы (правильных ответов менее 50%)	

На промежуточную аттестацию выносится: тест, два теоретических вопроса и 1 задача. Максимально студент может набрать 12 баллов.

Итоговый суммарный балл студента, полученный при прохождении промежуточной аттестации, переводится в традиционную форму по системе «отлично», «хорошо», «удовлетворительно» и «неудовлетворительно», «зачтено», «не зачтено».

Оценка «отлично» выставляется студенту, который набрал в сумме 12 баллов (выполнил все задания на эталонном уровне). Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

Оценка «хорошо» выставляется студенту, который набрал в сумме от 8 до 11 баллов при условии выполнения всех заданий на уровне не ниже продвинутого. Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

Оценка «удовлетворительно» выставляется студенту, который набрал в сумме от 4 до 7 баллов при условии выполнения всех заданий на уровне не ниже порогового. Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

Оценка «**неудовлетворительно**» выставляется студенту, который набрал в сумме менее 4 баллов или не выполнил все предусмотренные в течение семестра практические задания.

Оценка «зачтено» выставляется студенту, который набрал в сумме не менее 4 баллов при условии выполнения всех заданий на уровне не ниже порогового. Обязательным условием является выполнение всех предусмотренных в течение семестра практических заданий.

Оценка «**не** за**чтено**» выставляется студенту, который набрал в сумме менее 4 баллов или не выполнил все предусмотренные в течение семестра практические задания.

3 ПАСПОРТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ ПО ДИСЦИПЛИНЕ

№	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или её части)	Вид, метод, форма оце- ночного мероприятия
1	Основы организации процессов конструкторского проектирования и технического документирования	ПК-5.2	Зачет
2	Методы конструкторского проектирования элементов, узлов и устройств ЭС.	ПК-6.2	Зачет
3	Основы автоматизации процессов конструкторского проектирования и документирования	ПК-6.3	Экзамен
4	Методы моделирования и оптимизации конструкторско-технологических процессов	ПК-5.2	Экзамен

4 ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ

4.1. Промежуточная аттестация в форме экзамена и зачета

Код компетенции	Результаты освоения ОПОП Содержание компетенций
ПК-5.2.	Выбирает из доступных на рынке оптимальные программные средства
	для решения конкретных задач

Типовые тестовые вопросы:

Вопрос 1

Укажите этапы разработки ЭС, устанавливаемые ГОСТ:

- + разработка технического предложения
- разработка научно-технического проекта
- + разработка эскизного проекта
- разработка конструкторско-технологического проекта
- + разработка технического проекта

Вопрос 2

Укажите вопросы, которые в техническом задании на разработку ЭС не рассматриваются:

- назначение и область применения
- + правила реализации продукции в торговой сети
- технические требования
- конструктивные требования
- эксплуатационные требования
- экономические требования
- условия по хранению и транспортированию
- требования по надежности
- правила проведения испытаний и приемки образцов в производстве

Вопрос 3

Укажите основные задачи, решаемые на стадии технических предложений:

+ анализ существующих технических решений

- + патентные исследования
- + проработка возможных вариантов создания ЭС
- + выбор оптимального решения
- + макетирование отдельных узлов ЭС
- создание опытного образца ЭС
- + выработка требований для последующих этапов разработки
- проведение маркетинговых исследований

Укажите вопросы, осуществляемые на стадии эскизного проектирования:

- + конструкторскую и технологическую проработку выбранного варианта реализации ЭА
- + изготавливается действующий образец или серия ЭА
- + проводятся испытания ЭС в объеме, достаточном для подтверждения заданных в ТЗ технических и эксплуатационных параметров
- + организуется разработка в полном объеме необходимой конструкторской документации, которой присваивается литера "Э"
- + прорабатываются основные вопросы технологии, изготовления, наладки и испытания элементов, узлов, устройств и ЭА в целом
- организуется разработка в полном объеме необходимой конструкторской документации, которой присваивается литера "К"

Вопрос 5

Укажите работы, которые осуществляются на стадии технического проекта:

- + принимаются окончательные решения о конструктивном оформлении ЭС и составляющих ее узлов
- + разрабатывается полный комплект конструкторской и технологической документации, которой присваивается литера "Т"
- разрабатывается полный комплект конструкторской и технологической документации, которой присваивается литера "Э"
 - + изготавливается опытная серия ЭС
- + проводятся испытания ЭС на соответствие заданным в ТЗ техническим и эксплуатационным требованиям

Вопрос 6

Укажите литеру, которую присваивают полному комплекту рабочей конструкторской документации на этапе технического проектирования:

- + литера "О"
- литера "Э"
- литера "Т"
- литера "К"

Вопрос 6

Укажите стадии, которые включаются в научно-исследовательскую работу (НИР):

- + стадия разработки ТЗ
- + стадия разработки технического предложения
- + стадия разработки эскизного проектирования
- стадия разработки технического проекта

Вопрос 7

Укажите стадии, которые включаются в опытно-конструкторскую разработку (ОКР):

- стадия разработки ТЗ
- стадия разработки технического предложения
- стадия разработки эскизного проектирования
- + стадия разработки технического проекта
- + стадия технологической подготовки производства

Вопрос 8

Укажите, что понимается под термином - жизненный цикл продукции технического назначения:

- + все этапы создания изделия, начиная с разработки ТЗ и кончая эксплуатацией готовых изделий с последующей утилизацией
 - все этапы создания изделия, начиная с разработки ТЗ и кончая эксплуатацией готовых изделий
- все этапы создания изделия, начиная с разработки технического предложения и кончая эксплуатацией готовых изделий

Укажите основные комплексы Государственных стандартов, регламентирующих состав технической документации по стадиям жизненного цикла ЭС:

- + единая система конструкторской документации (ЕСКД)
- + единая система технологической документации (ЕСТД)
- + единая система программной документации (ЕСПД)
- + единая система технологической подготовки производства (ЕСТПП)
- + единая система защиты изделий и материалов от коррозии, старения и биоповреждений (ЕСЗКС)
- единая система информационной поддержки жизненного цикла ЭС

Вопрос 10

Укажите основные цели и задачи стандартизации:

- + обеспечить единую нормативно-техническую, информационную, методическую и организационную основу проектирования, производства и эксплуатации изделий
- + обеспечивается использование единого технического языка и терминологии, взаимообмен документацией между предприятиями без ее переоформления
 - + обеспечивается возможность совершенствование организации проектных работ
- + обеспечивается возможность автоматизации разработки технической документации с унификацией машинно-ориентированных форм документов
 - + обеспечиваются условия для совершенствования способов учета, хранения и изменения документации
- обеспечивается разработка в полном объеме необходимой конструкторской документации, которой присваивается литера "К"

Вопрос 11

Конструкторские документы (КД) это:

- + графические и текстовые документы, в отдельности или в совокупности определяющие состав и устройство изделия и содержащие необходимые данные для его разработки и изготовления, контроля, приемки, эксплуатации, ремонта, утилизации
- графические и текстовые документы, в отдельности или в совокупности определяющие состав и устройство готового изделия
- графические и текстовые документы, содержащие необходимые данные для его разработки и изготовления, контроля, приемки, эксплуатации, ремонта, утилизации

Вопрос 12

Укажите документы, не относящиеся к графическим конструкторским документам:

- чертеж детали изображение детали и другие данные, необходимые для ее изготовления и контроля
- сборочный чертеж: (СБ) изображение сборочных единиц и другие детали, необходимые для сборки и контроля
- чертеж общего вида (BO) определяет конструкцию изделия, взаимодействие его основных частей и поясняет принцип работы изделия
- теоретический чертеж (TЧ) геометрическая форма (обводы) изделия и координаты расположения основных частей
- габаритный чертеж (ГЧ) контурное изображение изделия с габаритными, установочными и присоединительными размерами
 - электромонтажный чертеж: (ЭМ) данные для электрического монтажа изделия
- монтажный чертеж (МЧ) контурное изображение изделия и данные для его установки на месте эксплуатации
 - установочный чертеж; (УЧ) данные для установки изделия
 - схема составные части изделия в виде условных изображений или обозначений и связи между ними
 - + таблица (ТБ) данные, сведенные в таблицу
 - + спецификация определяет состав сборочной единицы, комплекса, комплекта

Вопрос 13

Укажите документы, не относящиеся к текстовым конструкторским документам:

- спецификация определяет состав сборочной единицы, комплекса, комплекта;
- (ВС) перечень всех спецификаций составных частей изделия с указанием их количества и входимости
- ведомость ссылочных документов (ВД) перечень документов, на которые имеются ссылки в КД на изделие
- ведомость покупных изделий (ВП) перечень покупных изделий, примененных в разрабатываемом изделии;

- ведомость разрешений применения покупных изделий (ВИ) перечень покупных изделий, разрешенных к применению по ГОСТу;
- ведомость держателей подлинников (ДП) перечень организаций-хранителей подлинников примененных в изделии документов
- ведомость технического предложения (ВТ) перечень документов, вошедших в техническое предложение
 - ведомость эскизного проекта (ЭП) перечень документов, вошедших в эскизный проект
 - ведомость технического проекта (ТП) перечень документов, вошедших в технический проект
- пояснительная записка (ПЗ) описание устройства и принципа действия разработанного изделия, а также обоснование разработки
- технические условия (ТУ) требования к изделию, его изготовлению, контролю качества, приемке и поставке
- программа и методика испытаний (ПМ) технические данные, подлежащие проверке при испытании изделия, порядок и методы их контроля;
 - таблица (ТБ) данные, сведенные в таблицу
- расчет (PP) расчеты параметров и величин, например, расчет размерных цепей, расчет на прочность, расчет теплового режима и др.
- эксплуатационные документы документы для использования при эксплуатации, обслуживании и ремонте изделия в процессе эксплуатации;
- ремонтные документы данные для проведения ремонтных работ на специализированных предприятиях
- инструкция (И) указания и правила, используемые при изготовлении изделия (сборке, регулировке, контроле и т. п.)
- патентный формуляр ($\Pi\Phi$) документ, содержащий результаты патентного поиска, осуществленного при разработке изделия
 - + схема составные части изделия в виде условных изображений или обозначений и связи между ними

Укажите, какие виды схем не используются при проектировании ЭС:

- структурные схемы, определяющие основной состав ЭС и его функциональные части, их назначение и взаимосвязи
- функциональные схемы, поясняющие процессы, происходящие в отдельных функциональных частях и узлах ЭС
- принципиальные схемы, определяющие полный состав элементов и связей между ними и дающие полное представление о принципе работы отдельных узлов и устройств ЭС
- схемы соединений, показывающие соединения составных частей ЭС и определяющие провода, жгуты, кабели и другие соединительные изделия, а также места их присоединения и ввода.
 - схемы подключений, показывающие внешние подключения ЭС
- общие схемы, определяющие составные части ЭС и соединения их между собой на месте эксплуатации;
- схемы расположения, устанавливающие взаимное расположение отдельных устройств ЭС, а также соединяющих их жгутов, кабелей и т. д.
- + эскизные схемы, определяющие основной состав ЭС и его функциональные части, их назначение и взаимосвязи на этапе эскизного проектирования

Вопрос 15

Укажите показатели, не используемые при оценке уровня технологичности, надежности и качества конструкции ЭС:

- сложность конструкции ЭС
- число элементов, образующих ЭС
- объем ЭС
- коэффициент интеграции, или коэффициент использования физического объема
- общая масса ЭА
- общая мощность потребления ЭС
- общая площадь, занимаемая ЭС
- собственная частота колебаний конструкции
- степень герметичности конструкции ЭС
- вероятность безотказной работы ЭС
- степень унификации ЭС
- коэффициент автоматизации конструкторских работ
- + коэффициент виброизоляции
- + условная вероятность отказа ЭС

Вопрос 16.

Укажите внешние факторы, влияющие на работоспособность ЭС:

- + климатические
- + механические
- + радиационные
- энергетические

Вопрос 17

Укажите внешние факторы, влияющие на работоспособность ЭС, но которые не относятся к климатическим факторам:

- изменение температуры и влажности окружающей среды
- тепловой удар
- изменение атмосферного давления
- наличие движущихся потоков пыли или песка
- присутствие активных веществ в окружающей атмосфере
- наличие солнечного облучения
- наличие грибковых образований (плесень), микроорганизмов, насекомых, грызунов
- наличие взрывоопасной и легковоспламеняющейся атмосферы
- наличие дождя и брызг
- присутствие в окружающей среде озона
- + воздействие линейного ускорения
- + космическую радиацию

Вопрос 18

К механическим факторам, влияющим на работоспособность ЭС, относят:

- + воздействие вибраций
- + воздействие механических ударов
- + воздействие линейного ускорения
- + воздействие акустического удара
- воздействие теплового удара
- воздействие радиационного удара

Вопрос 19

К радиационным факторам, влияющим на работоспособность ЭС, относят:

- + космическую радиацию;
- + ядерную радиацию от реакторов, атомных двигателей, радиационно-опасных объектов;
- + облучение потоком гамма-фотонов, нейтронов, бета-частиц, альфа-частиц, протонов, дейтронов
- тепловую радиацию
- присутствие в окружающей среде озона

Вопрос 20

В зависимости от условий эксплуатации и объекта установки государственные стандарты классифицируют ЭС на следующие виды:

- + стационарные
- + портативные
- + транспортируемые
- космические

Вопрос 21

Укажите требования, которым должна отвечать вновь разрабатываемая электронная аппаратура:

- + тактико-техническим
- + конструктивно-технологическим
- + эксплуатационным
- + надежностным
- + экономическим требованиям
- потребительским

Вопрос 21

Укажите тактико-технические требования, предъявляемые для ЭВМ:

- + быстродействие
- + объем оперативной памяти

- + объем постоянной памяти
- + объем внешней памяти
- + разрядность команд и данных
- + языки программирования
- стоимость

Укажите конструктивно-технологические требования, относящиеся к ЭС:

- + обеспечение функционально-узлового принципа построения конструкции ЭС
- + технологичность
- + минимальная номенклатура комплектующих изделий
- + ремонтопригодность
- + защита от несанкционированного доступа
- + удобный доступ к узлам и элементам
- + обеспечение безопасной работы оператора
- быстродействие

Вопрос 23

Укажите экономические требования, относящиеся к ЭС:

- + минимально возможные затраты времени, труда и материальных средств на разработку, изготовление и эксплуатацию ЭС
 - + минимальная стоимость ЭС после освоения их в производстве
 - + минимальные затраты на эксплуатацию, обслуживание и плановые ремонты
 - минимальная номенклатура комплектующих изделий

Вопрос 24

Под модульным принципом конструирования понимается проектирование изделий ЭС на основе:

- + конструктивной взаимозаменяемости составных частей конструкции модулей
- + функциональной взаимозаменяемости составных частей конструкции модулей
- схемной взаимозаменяемости составных частей конструкции модулей

Вопрос 25

Выберите наиболее адекватное определение конструктивной единицы – модуль:

- + составная часть аппаратуры, выполняющая в конструкции подчиненные функции, имеющая законченное функциональное и конструктивное оформление и снабженная элементами коммутации и механического соединения с подобными модулями и с модулями низшего уровня в изделии
- составная часть аппаратуры, имеющая законченное функциональное и конструктивное оформление и снабженная элементами коммутации и механического соединения с подобными модулями и с модулями низшего уровня в изделии
- составная часть аппаратуры, выполняющая в конструкции подчиненные функции и снабженная элементами коммутации и механического соединения с подобными модулями и с модулями низшего уровня в изделии

Вопрос 26

Укажите схемные модули, которые можно поставить в соответствие конструктивному модулю – корпус микросхемы:

- + логический, запоминающий элемент
- функциональный узел
- устройство
- комплекс
- система

Вопрос 27

Укажите схемные модули, которые можно поставить в соответствие конструктивному модулю – типовой элемент замены (ТЭЗ):

- логический, запоминающий элемент
- + функциональный узел
- устройство
- комплекс
- система

Вопрос 28.

Укажите схемные модули, которые можно поставить в соответствие конструктивному модулю – блок:

- логический, запоминающий элемент
- функциональный узел
- + устройство
- комплекс
- система

Вопрос 29.

Укажите схемные модули, которые можно поставить в соответствие конструктивному модулю – рама:

- логический, запоминающий элемент
- функциональный узел
- устройство
- + комплекс
- система

Вопрос 30.

Укажите схемные модули, которые можно поставить в соответствие конструктивному модулю – стойка:

- логический, запоминающий элемент
- функциональный узел
- устройство
- комплекс
- + система

Вопрос 31.

Укажите требования, которым необходимо удовлетворять при разбивке структурных и функциональных схем на части - модули:

- + функциональной законченности, когда выделяемая подсхема должна обладать необходимой полнотой и выполнять частные функции по приему, обработке, хранению и передаче информации
 - + минимизации внешних связей подсхем
- минимального заполнения отводимого конструктивного пространства (поверхности) модулями (компонентами)
- + модули (компоненты) подсхем должны рассеивать приблизительно одинаковые мощности во избежание местных перегревов
- модули (компоненты) подсхем должны быть чрезмерно чувствительными к электрическим, магнитным и электромагнитным помехам и должны создавать чрезмерные помехи

Вопрос 32.

Укажите работы, выполняемые при конструировании модулей первого уровня иерархии (ТЭЗ):

- + изучение функциональных схем с целью выявления одинаковых по назначению подсхем и унификации их структуры в пределах конкретного изделия, что приводит к уменьшению многообразия различных подсхем и, следовательно, номенклатуры различных типов ТЭЗ
 - + выбор серии микросхем, корпусов микросхем, дискретных ЭРЭ
 - + выбор единого максимально допустимого числа выводов соединителя для всех типов модулей
 - + определение длины и ширины печатной платы
 - + собственно конструирование печатной платы
 - + выбор способов защиты модуля от перегрева и внешних воздействий
 - изготовление опытного образца ТЭЗа

Вопрос 33.

Укажите задачи, решаемые при конструировании печатных плат:

- + выбор проводниковых и изоляционных материалов, формы и размеров печатных плат, способов установки компонентов
- + определения ширины, длины и толщины печатных проводников, расстояний между ними, диаметров монтажных и переходных отверстий, размеров контактных площадок
 - + трассировка печатного монтажа
 - + оформления конструкторской документации
 - изготовление опытного образца печатной платы

Укажите основные средства обеспечения надежности работы конструкции ЭС:

- + защита конструкции от механических воздействий
- + защита конструкции от воздействия влажности
- + защита конструкции от воздействия влажности
- + герметизация конструкции ЭС
- + защита конструкции от воздействия помех
- микроминиатюризация несущей конструкции

Вопрос 35.

Укажите правильное определение надежности конструкции ЭС:

- + надёжность свойство ЭС выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, при соблюдении режимов эксплуатации, правил технического обслуживания, хранения и транспортирования.
- надёжность свойство ЭС выполнять заданные функции во времени, в заданных пределах, при соблюдении режимов эксплуатации, правил технического обслуживания, хранения и транспортирования.
- надёжность свойство ЭС выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в заданных пределах, при соблюдении режимов эксплуатации.

Вопрос 36.

Укажите более точное определение безотказности конструкции ЭС:

- + безотказность способность ЭС непрерывно сохранять заданные функции в течение установленного в технической документации времени, характеризуемое вероятностью безотказной работы P(t), частотой отказов f(t), интенсивностью отказов f(t), средней наработкой на отказ (продолжительность работы изделия до появления отказа) Тср
- безотказность способность ЭС непрерывно сохранять заданные функции в течение установленного в технической документации времени
- безотказность способность ЭС непрерывно сохранять заданные функции, характеризуемая вероятностью безотказной работы P(t), частотой отказов f(t), интенсивностью отказов f(t), средней наработкой на отказ (продолжительность работы изделия до появления отказа) f(t)

Вопрос 37.

Укажите смысловое определение - электрические соединения в электронной аппаратуре (ЭА):

- + под электрическими соединениями понимают *линии передачи* (ЛП) и электрические *контакты*, служащие для передачи сигналов и электрической энергии между микросхемами (МС), электрорадиоэлементами (ЭРЭ), модулями, образующими ЭА
- под электрическими соединениями понимают *линии передачи* (ЛП), служащие для передачи сигналов и электрической энергии между микросхемами (МС), электрорадиоэлементами (ЭРЭ), модулями, образующими ЭА
- под электрическими соединениями понимают *линии передачи* (ЛП), служащие для передачи сигналов между микросхемами (МС), электрорадиоэлементами (ЭРЭ), модулями, образующими ЭА

Вопрос 38.

Укажите свойства, которыми не должны обладать линии передачи в ЭС:

- однородным по длине линии волновым сопротивлением
- способностью передавать электрические сигналы в широком диапазоне частот, токов и напряжений
- минимальной толщиной изоляционного слоя провода с диэлектрической проницаемостью, близкой к единице
 - способностью к объединению в узлы
 - возможностью осуществлять коммутацию без механической поддержки
 - способностью к автоматизации при проведении монтажных работ
 - + максимальным активным и индуктивным сопротивлениями
 - + максимальным полем вокруг линии при протекании по ней тока

Вопрос 39.

На какие виды можно разделить сигнальные линии связи:

- + на электрически длинные и электрически короткие, характер искажения сигналов в которых различен
- на электрически длинные и электрически короткие, характер искажения сигналов в которых идентичен

Вопрос 40.

Какой схемой моделируют короткую ЛП при анализе электрических процессов:

- + моделируют эквивалентной схемой, состоящей из емкости и индуктивности ЛП, либо только емкости, сосредоточенными в одной точке, а не распределенными по всей длине линии
- моделируют эквивалентной схемой, состоящей из емкости и индуктивности ЛП, либо только емкости, распределенными по всей длине линии

Вопрос 41.

Чем обусловлены перекрестные помехи в коротких ЛП:

- + электрическим, магнитным и электромагнитным взаимодействием расположенных по соседству ЛП
- требованиями микроминиатюризации аппаратуры
- омическим сопротивлением изоляции между расположенных по соседству ЛП

Вопрос 42.

При каких условиях считается, что длинная ЛП согласована:

- + если сопротивление, на которое она нагружена, равно волновому сопротивлению линии
- если сопротивление, на которое она нагружена, меньше волнового сопротивления линии
- если сопротивление, на которое она нагружена, больше волнового сопротивления линии

Типовые теоретические вопросы:

- 1) Этапы разработки электронных средств (ЭС)
- 2) Техническая и схемная документация
- 3) Показатели качества конструкции ЭС
- 4) Внешние факторы, влияющие на работоспособность ЭС.
- 5) Объекты установки ЭС и их характеристики
- 6) Требования, предъявляемые к конструкции ЭС
- 7) Модульный принцип конструирования, конструктивная иерархия элементов, узлов и устройств
 - 8) Стандартизация при модульном конструировании
 - 9) Методы защиты конструкции от механических воздействий
 - 10) Методы защиты конструкции от температурных воздействий
 - 11) Методы защиты конструкции от воздействия помех
 - 12) Методы обеспечения надежности электронной аппаратуры
 - 13) Методология системного подхода к проектированию сложных электронных средств

Типовые практические задания:

- 1) Анализ конструкции ЭС современного наноспутника формата КУБСАТ на технологичность.
- 2) Анализ конструкции ЭС современного беспилотного летательного аппарата на технологичность.
 - Изучение и анализ конструкции ЭС системы электропитания наноспутника.
 - 4) Изучение и анализ конструкции ЭС системы ориентации наноспутника.

Код компетенции	Результаты освоения ОПОП	
	Содержание компетенций	
ПК-6.2.	Выполняет эксперименты и оформляет результаты исследований и разработок	
ПК-6.3.	Выполняет элементы документации, планов и программ проведения отдельных этапов работ	

Типовые тестовые вопросы:

Вопрос 1

Выберите правильный ответ «Что явилось шестым этапом эволюции принципов и средств автоматизации проектно-производственных процессов?»:

- + создание автоматизированных систем технологической подготовки производства, а также различных систем автоматизированного проектирования, систем подготовки управляющих программ для станков с ЧПУ и промышленных роботов
- создание перепрограммированных автоматических промышленных роботов и различных автоматизированных систем управления (АСУП и АСУПП)
- создание станков с числовым программным управлением, способных быстро перестраиваться на выпуск новых деталей за счет смены управляющих программ

Укажите основные элементы организационной структуры $\Gamma A\Pi$:

- + гибкая производственная система (ГПС)
- + гибкий производственный модуль (ГПМ)
- + гибкая автоматизированная линия / участок (ГАЛ)
- + гибкий автоматизированный цех
- + гибкий автоматизированный завод (ГАЗ)
- гибкая виртуальная производственная система

Вопрос 3

Укажите правильное определение «Гибкая производственная система (ГПС)»:

- + это совокупность или отдельная единица технологического оборудования и системы обеспечения его функционирования в автоматическом режиме, обладающая свойством автоматизированной переналадки при производстве изделий заданной номенклатуры
- это совокупность технологического оборудования и системы обеспечения его функционирования в автоматическом режиме, обладающая свойством автоматизированной переналадки при производстве изделий заданной номенклатуры
- это производственная система, состоящая из единиц технологического оборудования, оснащенная автоматизированным устройством программного управления и средствами автоматизации технологического процесса, автономно функционирующая, осуществляющая многократные циклы и имеющая возможность встраивания в систему более высокого уровня

Вопрос 4

Укажите правильное определение «Гибкий производственный модуль (ГПМ)»:

- + это ГПС, состоящая из единиц технологического оборудования, оснащенная автоматизированным устройством программного управления и средствами автоматизации технологического процесса, автономно функционирующая, осуществляющая многократные циклы и имеющая возможность встраивания в систему более высокого уровня
- это совокупность или отдельная единица технологического оборудования и системы обеспечения его функционирования в автоматическом режиме, обладающая свойством автоматизированной переналадки при производстве изделий заданной номенклатуры
- это совокупность технологического оборудования и системы обеспечения его функционирования в автоматическом режиме, обладающая свойством автоматизированной переналадки при производстве изделий заданной номенклатуры

Вопрос 5

Что не позволяет реализация проектов $\Gamma A\Pi$ в условиях среднесерийного и мелкосерийного производства:

- обеспечить быструю перестройку производства на выпуск новой продукции за счет гибкости производственной системы, что позволяет полнее удовлетворять запросы заказчиков
- интенсифицировать технологический процесс, то есть увеличить коэффициент сменности и коэффициент загрузки оборудования
- оптимизировать режимы обработки, оперативно корректировать технологические процессы, уменьшить производственные циклы и существенно увеличить производительность труда и экономию трудовых ресурсов
- улучшить социальные условия труда, уменьшить общий объем монотонного, тяжелого ручного и другого непривлекательного труда
- увеличить качество продукции, размерно-геометрическую стабильность деталей и технологичность сборки
 - сократить объем бумажной документации
 - + уменьшить производительность труда и качество продукции

Вопрос 6

Укажите функции, реализуемые нижним уровнем ГАП:

+ управление технологическими процессами обработки деталей.

- + управление транспортировкой заготовок деталей и инструмента.
- + управление процессами загрузки-выгрузки на складах.
- + управление промышленными роботами и манипуляторами.
- + обмен информацией со средним уровнем управления.
- ведение операций учета состояний производственных процессов.

Выберите состояния гибкости, не входящие в классификацию ГАП по гибкости:

- групповая гибкость, характеризующаяся размером группы деталей, изготовленных в ГАП
- техническая гибкость, характеризующаяся быстротой переналадки оборудования при переходе на выпуск очередного типа изделия в предыдущие группы
- технологическая гибкость, характеризующаяся трудоемкостью перестройки ГАП при переходе на выпуск изделия нового типа
- структурная гибкость, определяющая возможность поэтапного ввода в эксплуатацию, а также возможность расширения функций за счет ввода в действие новых модулей
- надежная гибкость, определяющая способность ГАП сохранять полную или частичную работоспособность при выходе из строя отдельных элементов
- + экономическая гибкость, определяющая способность ГАП оптимизировать затраты на производство продукции

Вопрос 8

Укажите составляющие классификация ГАП по степени гибкости:

- высокая гибкость, когда номенклатура продукции, приведенная на один ГПМ, превышает 100 наименований, а затраты времени на номенклатуру составляет не более 5% полезного фонда времени
- + высокая гибкость, когда номенклатура продукции, приведенная на один ГПМ, превышает 100 на-именований, а затраты времени на номенклатуру составляет не более 10% полезного фонда времени
 - + средняя гибкость, номенклатура 20-100, время не более 20%.
 - + малая гибкость, номенклатура не более 20 и время более 20%.

Вопрос 9

Vкажите составляющие классификация $\Gamma A\Pi$ по степени автоматизации:

- + высокая степень автоматизации, где автоматическое управление и трехсменный режим работы
- высокая степень автоматизации, где автоматическое управление и четырехсменный режим работы
- + средняя степень, где непрерывное автоматизированное управление при многостаночном обслуживании с коэффициентом многостаночности более 2
 - + малая степень автоматизации, где коэффициент многостаночности не более 2

Вопрос 10

Укажите составляющие классификация ГАП по производительности:

- высокая производительность, когда рост выпуска продукции по сравнению с обработкой на оборудовании с ручным управлением традиционной технологии производства больше, чем в 100 раз
- + высокая, когда рост выпуска продукции по сравнению с обработкой на оборудовании с ручным управлением традиционной технологии производства больше, чем в 10 раз.
 - + средняя, увеличение выпуска в 2-10 раз
 - + малая, увеличение выпуска менее чем в 2-3 раза

Вопрос 11

Укажите нужные составляющие классификации САПР по видам:

- + САПР системно-технического проектирования
- + САПР схемотехнического проектирования
- + САПР конструкторского проектирования
- + САПР технологического проектирования
- САПР логико-аналитического проектирования

Вопрос 12

Укажите задачи, решаемые САПР схемотехнического проектирования:

- + логическое проектирование
- + моделирование
- + контроль и разработка диагностических тестов и др.
- покрытие функционально-логической схемы заданным набором микросхем

Вопрос 13

Укажите задачи, решаемые САПР конструкторского проектирования:

- + покрытие функционально-логической схемы заданным набором микросхем
- + компоновка конструктивных модулей і-го уровня иерархии
- + размещение элементов і-го уровня конструктивной иерархии на следующий уровень
- + задача трассировки печатных и проводных соединений
- задачи системного проектирования и структурного проектирования

Вопрос 14

Укажите задачи, решаемые САПР технологического проектирования:

- + разработка алгоритмов управляющего оборудования с ЧПУ
- + разработка технической документации
- контроль и разработка диагностических тестов и др.

Вопрос 15

Укажите задачи, решаемые САПР системно-технического проектирования:

- + задачи системного проектирования
- + задачи структурного проектирования
- задачи логического проектирования
- задачи моделирования

Вопрос 16

Укажите нужные составляющие классификации САПР по уровням автоматизации:

- + низко-автоматизированное проектирование, где количество автоматизированных процедур составляет от 20 до 25 % всех проектных процедур
- низко-автоматизированное проектирование, где количество автоматизированных процедур составляет от 25 до 30 % всех проектных процедур
 - + средне-автоматизированное проектирование, 25-50%
 - средне-автоматизированное проектирование, 30-55%
 - + высокоавтоматизированное проектирование, более 50%
 - высокоавтоматизированное проектирование, более 55%

Вопрос 17

Укажите объективные составляющие классификации САПР по производительности:

- + малой производительности, где в течение года проектируется до 10⁵ проектных документов
- малой производительности, где в течение года проектируется до 10³ проектных документов
- + средней производительности, 10^5 - 10^6 проектных документов
- средней производительности, 10^3 - 10^4 проектных документов
- + высокой производительности, более 10⁶ проектных документов
- высокой производительности, более 10⁴ проектных документов

Вопрос 18

Укажите объективные составляющие классификации САПР по сложности объектов проектирования:

- + простые объекты до 10^2 составных частей
- + средней сложности -10^2 - 10^3
- + сложные объекты -10^3 - 10^4
- + очень сложные объекты -10^4 - 10^6
- очень сложные объекты -10^4 - 10^5
- + очень высокой сложности больше 10⁶
- очень высокой сложности больше 10⁵

Вопрос 19

Укажите не существующие виды обеспечений САПР:

- математическое обеспечение
- программное обеспечение
- техническое обеспечение
- лингвистическое обеспечение
- информационное обеспечение
- + научно-методическое обеспечение

Вопрос 20

Математическое обеспечение САПР это:

- + совокупность математических методов, алгоритмов и моделей, необходимых для выполнения автоматизированного проектирования
- совокупность математических методов, алгоритмов, моделей и программ, необходимых для выполнения автоматизированного проектирования
- совокупность математических методов, алгоритмов и программ, необходимых для выполнения автоматизированного проектирования

Программное обеспечение САПР это:

- совокупность алгоритмов и программ, представленных в заданной форме вместе с необходимой программной документацией
- + совокупность программ, представленных в заданной форме вместе с необходимой программной документацией
- совокупность моделей, алгоритмов и программ, представленных в заданной форме вместе с необходимой программной документацией

Вопрос 22

Техническое обеспечение САПР это:

- совокупность взаимосвязанных технических и программных средств для ввода, хранения, переработки данных для операций общения человека с ЭС и изготовления проектной документации
- совокупность взаимосвязанных технических, программных и инструментальных средств для ввода, хранения, переработки данных для операций общения человека с ЭС и изготовления проектной документации
- + совокупность взаимосвязанных технических средств для ввода, хранения, переработки данных для операций общения человека с ЭС и изготовления проектной документации

Вопрос 23

Лингвистическое обеспечение САПР это:

- совокупность необходимых языков и программных средств для автоматизированного проектирования
- совокупность необходимых языков, методов и программных средств для автоматизированного проектирования
 - + совокупность необходимых языков для автоматизированного проектирования

Вопрос 24

Информационное обеспечение САПР это:

- совокупность представленных в заданной форме сведений и программ, необходимых для выполнения автоматизированного проектирования
- совокупность представленных в заданной форме сведений и методик, необходимых для выполнения автоматизированного проектирования
- + совокупность представленных в заданной форме сведений, необходимых для выполнения автоматизированного проектирования

Вопрос 25

Укажите основные задачи автоматизированного конструкторского проектирования:

- + компоновка конструктивов і-го уровня в конструктивы і+1-уровня
- компоновка конструктивов і+1-го уровня в конструктивы і-го уровня
- + размещение конструктивов і-го уровня в конструктивы і+1-уровня
- размещение конструктивов i+1-го уровня в конструктивы i-го уровня
- + трассировка межсоединений

Вопрос 26

Указать показатели качества, которые должны удовлетворяются наилучшим образом при решении задачи размешения элементов в монтажном пространстве:

- + минимальная суммарная длина всех соединений
- + минимальная длина самой длинной связи
- + минимальное число пересечений проводников
- + минимальное число проводников в возможно более простой конфигурации
- минимальное суммарное сечение проводников

Вопрос 27

Указать показатели качества, которые должны удовлетворяются наилучшим образом при решении задачи трассировки:

- + минимальная суммарная длина соединений
- + минимальное число слоев платы
- + минимальное число пересечений проводников
- + минимальное число поворотов трасс
- максимальная ортогональность трасс

Вопрос 28

Укажите основные этапы решения задачи трассировки:

- постановка задачи
- + определение списка соединений (пар соединений точек)
- + распределение соединений по слоям
- + определение порядка трассировки цепей
- + трассировка отдельных соединений

Вопрос 29

Укажите показатели качества, которые должны удовлетворяются наилучшим образом при решении задачи компоновки:

- + минимальное число межблочных связей
- + минимальное число типов используемых блоков
- + минимальное количество блоков
- + более полное использование объемов блоков
- минимальное число пересечений проводников

Вопрос 30

Укажите ограничения, которые должны удовлетворяются при решении задачи компоновки:

- + максимальное число элементов в блоке
- + максимальное число внешних выводов
- + ограничения на совместную и раздельную компоновку некоторых элементов
- минимальное число межблочных связей

Типовые практические задания:

- 1. Решить задачу выбора оптимального варианта конструкции изделия с учетом последовательности операций по заданному варианту
- 2. Решить задачу компоновки электрических схем по заданному алгоритму
- 3. Решить задачу размещения элементов по заданному алгоритму
- 4. Решить задачу трассировки проводных соединений по заданному варианту
- 5. Решить задачу расчета запусков на технологические операции по заданному варианту
- 6. Решить задачу структурной оптимизации технологического процесса по заданному варианту

Типовые теоретические вопросы:

- 1. Основные этапы автоматизированного конструкторского проектирования.
- 2. Задача размещения элементов в монтажном пространстве (постановка задачи, последовательный алгоритм).
- 3. Автоматизация проектирования печатного монтажа (волновой алгоритм).
- 4. Алгоритм трассировки Рабина и Слежения за целью.
- 5. Лучевой алгоритм трассировки.
- 6. Автоматизация проектирования проводного монтажа в навал (алгоритм Прима).
- 7. Автоматизация проектирования проводного монтажа в каналах (Метод последовательных приближений).
- 8. Последовательный алгоритм компоновки по связности.
- 9. Итерационный алгоритм компоновки.
- 10. Компоновка схем (задача покрытия).
- 11. Эволюция принципов и средств автоматизации производственных процессов.
- 12. Основные элементы организационной структуры ГАП. Границы практического использования ГАП.
- 13. Классификации ГАП.
- 14. Управленческая функция ГАП.

- 15. Классификации САПР.
- 16. Распределение проводящих соединений по слоям печатной платы.
- 17. Постановка задачи компоновки типовых элементов конструкций.
- 18. Методы оптимизации технологических процессов
- 19. Определение оптимального варианта конструкции изделия с учетом последовательности операций (постановка задачи и алгоритм решения).
- 20. Расчет запусков на технологические операции на основе использования линейных стохастических сетей (постановка задачи и алгоритм решения).
- 21. Решение задачи оптимизации структуры технологической линии на основе сетевых моделей и потоковых методов (постановка задачи и алгоритм решения).
- 22. Исследование задачи маршрутной оптимизации на примере технологии изготовления печатных плат (постановка задачи и алгоритм решения).

4.2. Промежуточная аттестация в форме курсовой работы

Код компетенции	Результаты освоения ОПОП	
	Содержание компетенций	
ПК-5.2.	Выбирает из доступных на рынке оптимальные программные средства	
	для решения конкретных задач	
ПК-6.2.	Выполняет эксперименты и оформляет результаты исследований и раз-	
	работок	
ПК-6.3.	Выполняет элементы документации, планов и программ проведения от-	
	дельных этапов работ	

Типовое задание для курсовой работы по дисциплине:

Основной целью каждой проектной конструкторско-технологической разработки являются создание и выпуск изделий на уровне лучших потребительских качеств и высоких технических характеристик. Для достижения таких показателей на этапах жизненного цикла конструкторско-технологического проекта требуется разработать и проанализировать значительное число вариантов инженерных решений. Применение в инженерной практике современных информационных технологий, математических методов, моделей и инструментальных средств позволяет существенно сократить жизненный цикл проектных работ и повысить качество конструкторско-технологических разработок.

Цель курсовой работы — закрепить теоретический материал изучаемой дисциплины «Основы конструирования электронных средств», привить обучающимся студентам знания и умения в области математического моделирования и оптимизации конструкторско-технологических процессов и задач, и как следствие овладеть следующими компетенциями:

- способностью передавать результат проведенных исследований в виде конкретных рекомендаций, выраженных в терминах предметной области изучавшегося явления (ПК-5);
- способностью использовать методы математического и алгоритмического моделирования при анализе управленческих задач в научно-технической сфере (ПК-7).

Задачи курсовой работы — приобретение навыков и умений в вопросах практического применения современных методов математического моделирования и оптимизации при решении типовых инженерных конструкторско-технологических задач следующего вида:

- определение оптимального варианта конструкции изделия с учетом последовательности операций;
- расчет запусков на технологические операции на основе использования линейных стохастических сетей;
- решение задачи оптимизации структуры технологической линии методом расшивки узких мест;
 - исследование задачи маршрутной оптимизации на примере технологии печатных плат.

Тема курсовой работы: Исследование математических методов решения инженерных задач в области конструкторско-технологического проектирования и производства электронных средств.

Этапы выполнения курсовой работы

Процесс выполнения курсового проекта по теме, связанной решением заданных инженерных конструкторско-технологических задач, содержит следующие этапы:

- закрепление группы или отдельного студента за руководителем;
- выдача руководителем задания на курсовое проектирование;
- выполнение студентами основных разделов курсового проекта;
- оформление курсового проекта;
- представление завершенного и оформленного курсового проекта руководителю на проверку и получение допуска к защите;
- подготовка доклада к защите, оформление презентации и необходимых иллюстративных материалов;
- публичная защита курсового проекта перед руководителем в присутствии и участии группы студентов.

Задание на курсовую работу

Задание на курсовой проект выдается индивидуально каждому студенту и содержит следующую информацию:

- исходные данные для решения задачи, связанной с определением оптимального варианта конструкции изделия с учетом последовательности конструкторско-технологических операций [1];
- исходные данные для решения задачи расчета запусков на технологические операции на основе использования методов моделирования конструкторско-технологических процессов, построенных на теории линейных стохастических сетей [2];
- исходные данные для решения задачи оптимизации структуры технологической линии методом расшивки узких мест [3];
- исходные данные для решения задачи маршрутной оптимизации технологического процесса [4];
 - сроки выполнения курсовой работы.

Методические указания и варианты заданий указаны в пособиях:

- [1]. Таганов А.И. Конструкторско-технологическое обеспечение производства ЭВМ. Часть 1. Определение оптимального варианта конструкции изделия с учетом последовательности операций. Методические указания к практическим и лабораторным занятиям. Рязань: РГРТУ, 2012. 36 с.
- [2]. Таганов А.И. Конструкторско-технологическое обеспечение производства ЭВМ. Часть 2. Метод расчета запусков технологических операций на основе стохастических сетевых моделей. Методические указания к практическим и лабораторным занятиям. Рязань: РГРТУ, 2012. 32 с.
- [3]. Таганов А.И. Конструкторско-технологическое обеспечение производства ЭВМ. Часть 3. Структурная оптимизация процессов на основе сетевых моделей и потоковых методов: Методические указания к практическим и лабораторным занятиям. Рязань: РГРТУ, 2019. 24с.
- [4]. Таганов А.И. Конструкторско-технологическое обеспечение производства ЭВМ. Часть 4. Оптимизация управляющих программ технологических автоматов. Методические указания к практическим и лабораторным занятиям. Рязань: РГРТУ, 2019. 28 с.

Структура курсовой работы

Завершенный курсовой проект должен иметь следующую примерную структуру:

- Титульный лист
- Задание на курсовую работу
- Содержание
- Введение
- Решение задачи: «Определение оптимального варианта конструкции изделия с учетом последовательности операций».
- Решение задачи: «Расчет запусков на технологические операции на основе использования линейных стохастических сетей».
- Решение задачи: «Оптимизация структуры технологической линии методом расшивки узких мест».

- Решение задачи: «Маршрутная оптимизация конструкторско-технологического процесса на примере печатных плат».
 - Заключение
 - Список литературы
 - Приложения

Каждый из перечисленных разделов должен начинаться с новой страницы. Пояснительная записка должна быть сброшюрована и переплетена.

Содержание разделов курсовой работы

Пояснительная записка курсового проекта должна излагаться грамотным литературным языком, со сжатыми и четкими формулировками, без лишних подробностей и повторений. Не допускается сокращения слов, кроме общепринятых обозначений. Страницы записки должны быть пронумерованы и, если есть таблицы, графики или рисунки, то они должны иметь название.

1. *Титульный лист* выполняется на специальном бланке (Приложение В).

Перенос слов на титульном листе не допускается. Точку в конце фраз не ставят. При заполнении титульного листа необходимо ставить инициалы перед фамилией, а не после нее. Наименование темы на титульном листе пишут прописными буквами. При сдаче работы для защиты на листе должны быть проставлены все подписи. Титульный лист считается первым листом.

- **2.** Задание на проектирование выполняется на специальном бланке и содержит в обязательном порядке подпись руководителя о выдаче задания и подпись студента, что задание принято к исполнению.
- **3.** Содержание. В содержании последовательно перечисляются заголовки разделов, подразделов и приложений, а у правого поля текста указываются номера страниц. Заглавием этого листа должно служить слово «СОДЕРЖАНИЕ», написанное в отдельной строке прописными буквами.
- **4.** *Введение*. Во введении раскрывается актуальность выполненной работы. Указывается цель работы, задачи, объект и предмет исследования. Необходимо представить характеристику состояния проблемы по решаемым задачам.

Заглавием этой части должно служить слово «ВВЕДЕНИЕ», написанное в отдельной строке прописными буквами. Объем введения 2-3 страницы.

5. Решение задачи: «Определение оптимального варианта конструкции изделия с учетом последовательности операций».

В этом разделе приводится: постановка задачи исследования; краткое описание возможных методов решения сформулированной задачи; подробное описание решения задачи по заданному преподавателем варианту.

При написании и оформлении этого раздела следует руководствоваться методическими указаниями, представленными в библиотеке и читальных залах университета.

В конце раздела должны быть выводы (1-2 абзаца). Объем этой части курсового проекта не менее 10 страниц.

6. Решение задачи: «Расчет запусков на технологические операции на основе использования линейных стохастических сетей».

В разделе приводится: краткое описание понятий и терминов теории линейных стохастических сетей; содержание предлагаемого метода определения запусков на конструкторскотехнологические операции; подробное решение сформулированной задачи по заданному преподавателем варианту.

При выполнении и оформлении этого раздела следует руководствоваться методическими указаниями, представленными в библиотеке и читальных залах университета.

В конце раздела должны быть выводы (1-2 абзаца). Объем этой части курсового проекта не менее 10 страниц.

7. Решение задачи: «Оптимизация структуры технологической линии методом расшивки узких мест».

В этом разделе приводится: постановка задачи исследования; краткое описание возможных методов решения сформулированной задачи; подробное описание решения задачи по заданному преподавателем варианту.

При выполнении и оформлении этого раздела следует руководствоваться методическими указаниями, представленными в библиотеке и читальных залах университета.

В конце раздела должны быть выводы (1-2 абзаца). Объем этой части курсового проекта не менее 10 страниц.

8. Решение задачи: «Маршрутная оптимизация конструкторско-технологического процесса на примере печатных плат».

В этом разделе приводится: постановка задачи исследования; краткое описание возможных методов решения сформулированной задачи; подробное описание решения задачи по заданному преподавателем варианту.

При выполнении и оформлении этого раздела следует руководствоваться методическими указаниями, представленными в библиотеке и читальных залах университета.

В конце раздела должны быть выводы (1-2 абзаца). Объем этой части курсового проекта не менее 10 страниц.

9. Заключение. В заключении студент констатирует успешность и полноту решения поставленных задач курсового проекта, дает оценку перспектив развития вопросов по теме работы. Текст заключения не должен воспроизводить текст раздела введения.

Рекомендуемый заключения объем 1-2 страницы.

- 10. Список использованных источников. Этот раздел должен быть оформлен в соответствии с правилами библиографического описания по ГОСТ 7.1-2003 и другими документами [6-9].
- 11. Приложения. В приложения следует включать вспомогательный материал, на который имеются ссылки в основной части проекта. Приложения необходимо располагать в порядке появления ссылок в основном тексте.

Критерии оценивания курсовой работы

Руководитель при оценивании на допуск к защите, представленной студентом завершенной работы, руководствуется следующими общепринятыми критериями:

- степень и качество выполнения задания по всем разделам курсового проекта;
- раскрытие вопросов актуальности темы и эффективности применяемых методов для практического использования в предстоящей профессиональной инженерной деятельности;
 - объем работы, выполненный студентом самостоятельно;
- применение теоретических знаний, полученных студентами в процессе обучения, и навыков, приобретенных на практических занятиях по изучаемой дисциплине;
 - оригинальность и обоснованность проектных решений и приведенных выводов по работе;
- отношение студента к работе и своевременность написания основных разделов курсового проекта в соответствии с заданием.

Типовые вопросы на защите курсовой работы:

- 1. Цели и задачи курсовой работы в свете задач изучаемой дисциплины.
- 2. Постановка задачи определения оптимального варианта конструкции и методы ее эффективного решения.
- 3. Метод расчета запусков технологических операций на основе стохастических сетевых моделей.
- 4. Алгоритм структурной оптимизации процессов на основе сетевых моделей и потоковых метолов.
- 5. Примеры практических задач, связанных с проблемой оптимизации управляющих программ технологических автоматов.

Оператор ЭДО ООО "Компания "Тензор"