МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА"

СОГЛАСОВАНО Зав. выпускающей кафедры **УТВЕРЖДАЮ**

Физика полупроводниковых приборов

рабочая программа дисциплины (модуля)

Закреплена за кафедрой Микро- и наноэлектроники

Учебный план Лицензирование 03.03.01 25 00.plx

03.03.01 Прикладные математика и физика

Квалификация бакалавр

Форма обучения очная

Общая трудоемкость 6 ЗЕТ

Распределение часов дисциплины по семестрам

Семестр (<Курс>.<Семестр на курсе>)	6 (3.2)		7 (4.1)		Итого	
Недель	1	6	-	16		
Вид занятий	УП	РΠ	УП	РΠ	УП	РΠ
Лекции	16	16	16	16	32	32
Практические	16	16	16	16	32	32
Иная контактная	0,55	0,55	0,35	0,35	0,9	0,9
Консультирование перед экзаменом и практикой			2	2	2	2
Итого ауд.	32,55	32,55	34,35	34,35	66,9	66,9
Контактная работа	32,55	32,55	34,35	34,35	66,9	66,9
Сам. работа	55,3	55,3	38	38	93,3	93,3
Часы на контроль	8,45	8,45	35,65	35,65	44,1	44,1
Письменная работа на курсе	11,7	11,7			11,7	11,7
Итого	108	108	108	108	216	216

г. Рязань

Программу составил(и):

к.т.н., доц., Вишняков Николай Владимирович

Рабочая программа дисциплины

Физика полупроводниковых приборов

разработана в соответствии с ФГОС ВО:

ФГОС ВО - бакалавриат по направлению подготовки 03.03.01 Прикладные математика и физика (приказ Минобрнауки России от 07.08.2020 г. № 890)

составлена на основании учебного плана:

03.03.01 Прикладные математика и физика

утвержденного учёным советом вуза от 30.05.2025 протокол № 13.

Рабочая программа одобрена на заседании кафедры

Микро- и наноэлектроники

Протокол от 03.06.2025 г. № 8 Срок действия программы: 2025 - 2029 уч.г. Зав. кафедрой Литвинов Владимир Георгиевич

Визирование РПД для исполнения в очередном учебном году Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2026-2027 учебном году на заседании кафедры Микро- и наноэлектроники Протокол от _____2026 г. № ___ Зав. кафедрой Визирование РПД для исполнения в очередном учебном году Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2027-2028 учебном году на заседании кафедры Микро- и наноэлектроники Протокол от _____2027 г. № ___ Зав. кафедрой _____ Визирование РПД для исполнения в очередном учебном году Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2028-2029 учебном году на заседании кафедры Микро- и наноэлектроники Протокол от _____2028 г. № ___ Зав. кафедрой _____

Визирование РПД для исполнения в очередном учебном году

Рабочая программа пересмотрена, обсуждена и одобрена для исполнения в 2029-2030 учебном году на заседании кафедры

Микро- и наноэлектроники

Протокол от	2	2029 г. №	_	
Зав. кафедрой				

	1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)
1.1	Целью освоения дисциплины является формирование базовых знаний и умений в области общих физических принципов работы полупроводниковых приборов в дискретном и интегральном исполнении и особенностей физических процессов и явлений, протекающих в полупроводниковых приборах при различных режимах их эксплуатации, в соответствии с Федеральным государственным образовательным стандартом; формирование у студентов способности к логическому мышлению, анализу и восприятию информации посредством обеспечения этапов формирования компетенций, предусмотренных ФГОС, в части представленных ниже знаний, умений и навыков.
1.2	Задачи:
1.3	- расширение научного кругозора и эрудиции в вопросах физических процессов и явлений, а также границ физических возможностей современных полупроводниковых приборов в дискретном и интегральном исполнении;
1.4	- изучение основных физических принципов работы современных полупроводниковых приборов в дискретном и интегральном исполнении;
1.5	- освоение подходов к обоснованию и обеспечению оптимальных режимов эксплуатации полупроводниковых приборов;
1.6	- приобретение умения использовать полученные знания для проектирования полупроводниковых приборов в дискретном и интегральном исполнении;

	2. МЕСТО ДИСЦИ	ПЛИНЫ (МОДУЛЯ) В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ			
I	Цикл (раздел) ОП:	Б1.В.03			
2.1	Требования к предвари	тельной подготовке обучающегося:			
2.1.1	Физика				
2.1.2	Материалы электронной	техники			
2.1.3	Физические основы микр	оо- и наноэлектроники			
2.1.4	Физика твердого тела				
2.1.5	Метрология, стандартизация и сертификация				
2.1.6	Теоретическая физика				
2.2	Дисциплины (модули) предшествующее:	и практики, для которых освоение данной дисциплины (модуля) необходимо как			
2.2.1	Физика наносистем				
2.2.2	Компьютерное моделиро	рвание микро- и наносистем			
2.2.3	Микросхемотехника				
2.2.4	Современные твердотели	ные датчики			
2.2.5	Функциональные узлы э.	пектронных устройств			

3. КОМПЕТЕНЦИИ ОБУЧАЮЩЕГОСЯ, ФОРМИРУЕМЫЕ В РЕЗУЛЬТАТЕ ОСВОЕНИЯ ДИСЦИПЛИНЫ (МОДУЛЯ)

ПК-1: Способен строить физические и математические модели приборов, схем, устройств, измерительных и технологических установок электроники и наноэлектроники, использовать стандартные программные средства, изучать стандарты, проводить анализ результатов

ПК-1.1. Проводит моделирование и исследования функциональных, статических, динамических, временных, частотных характеристик приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения

Знать

Технический английский язык и методы и области применения типовой системы аналогового моделирования.

Умети

проводить оценку функциональных, статических, динамических, временных, частотных характеристик аналоговых блоков методом компьютерного моделирования.

Владеть

навыками проверки соответствия результатов моделирования требованиям функциональных, статических, динамических, временных, частотных характеристик, анализ потребляемой мощности и оценка площади.

ПК-2: Способен анализировать, систематизировать и обобщать результаты исследований приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения

ПК-2.1. Анализирует научные данные, результаты экспериментов и наблюдений

Зиать

методы анализа и обобщения отечественного и международного опыта в соответствующей области исследований.

Уметь

применять методы анализа научно-технической информации.

Владеть

методологией сбора, обработки, анализа и обобщения передового отечественного и международного опыта в соответствующей области исследований.

ПК-2.2. Систематизирует и обобщает результаты исследований приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения, представляет материалы в виде научных отчетов, публикаций, презентаций

Знать

методы проведения экспериментов и наблюдений, обобщения и обработки информации.

Уметь

оформлять результаты научно-исследовательских и опытно-конструкторских работ.

Владеть

методами сбора, обработки, анализа и обобщения результатов экспериментов и исследований в соответствующей области знаний.

В результате освоения дисциплины (модуля) обучающийся должен

D pesysii	тате бевбения дисциплины (модумя) бор набышей должен
3.1	Знать:
3.1.1	основные физические принципы, лежащие в основе работы современных полупроводниковых приборов в дискретном и интегральном исполнении.
3.2	Уметь:
3.2.1	обосновывать и выбирать оптимальные режимы работы полупроводниковых приборов.
3.3	Владеть:
3.3.1	грамотным физическим научным языком; международной системой единиц измерений физических величин (СИ) при физических расчетах и формулировке физических закономерностей; базовыми навыками экспериментального исследования параметров и характеристик полупроводниковых приборов в дискретном и интегральном исполнении.

	4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)								
Код занятия	Наименование разделов и тем /вид занятия/	Семестр / Курс	Часов	Компетен- ции	Литература	Форма контроля			
	Раздел 1. Введение								
1.1	Введение. Предмет и задачи дисциплины. Особенности построения функциональных и физико-топологических моделей полупроводниковых приборов, классификация моделей полупроводниковых приборов /Тема/	6/3	0			Аналитически отчёт. Зачёт.			
1.2	Введение. Электронные процессы в полупроводниках. Неравновесные электронные процессы: инжекция носителей заряда в полупроводник, диффузионный и дрейфовый токи, генерационно-рекомбинационные процессы, неравновесные носители в электрическом поле, токи, ограниченные пространственным зарядом. /Лек/	6/3	2	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.1, Л1.3, Л2.1, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Зачёт.			
1.3	Особенности построения функциональных и физико-топологических моделей полупроводниковых приборов, классификация моделей полупроводниковых приборов. /Пр/	6/3	4	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-В	Л1.1, Л1.3, Л2.1, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Контрольная работа.			

1.4	Электронные процессы в полупроводниках. Неравновесные электронные процессы: инжекция носителей заряда в полупроводник, диффузионный и дрейфовый токи, генерационно-рекомбинационные процессы, неравновесные носители в электрическом поле, токи, ограниченные пространственным зарядом. /Ср/	6/3	5,3	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.1, Л1.3, Л2.1, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Аналитический отчёт. Зачёт.
	Раздел 2. Барьерные полупроводниковые структуры					
2.1	Барьерные полупроводниковые структуры. /Тема/	6/3	0			Аналитический отчёт. Зачёт.

2.2	Контакты металл - полупроводник: барьер Шотки, барьер Мотта, невыпрямляющие	6/3	2	ПК-1.1-3 ПК-1.1-У	Л1.2, Л1.5, Л1.8, Л2.4,	Зачёт.
	(омические) контакты (туннельные контакты, омические контакты Шотки), МДП-структуры. Электронно-дырочные (р-п-) переходы. Контактная разность потенциалов. Вольтамперная характеристика р-п-перехода. Барьерная и диффузионная емкости рп-перехода. Пробой р-п-перехода. Потенциальные барьеры на границах раздела различных полупроводников: гетеропереходы. /Лек/			ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-В	91, 92, 93, 94, 95, 96, 97	
2.3	Модели полупроводниковых диодов. Статическая и динамическая модели диода, определение параметров модели диода. /Пр/	6/3	4	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.2, Л1.5, Л1.8, Л2.4, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Контрольная работа.
2.4	Контакты металл - полупроводник: барьер Шотки, барьер Мотта, невыпрямляющие (омические) контакты (туннельные контакты, омические контакты Шотки), МДП-структуры. Электронно-дырочные (р-п-) переходы. Контактная разность потенциалов. Вольтамперная характеристика р-п-перехода. Барьерная и диффузионная емкости рп-перехода. Пробой р-п-перехода. Потенциальные барьеры на границах раздела различных полупроводников: гетеропереходы. /Ср/	6/3	10	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.2, Л1.5, Л1.8, Л2.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Аналитический отчёт. Зачёт.
	Раздел 3. Полупроводниковые диоды.					
3.1	Полупроводниковые диоды. /Тема/	6/3	0			Аналитический отчёт. Зачёт.
3.2	Общие сведения о полупроводниковых диодах. Выпрямление в диоде. Эквивалентная схема диода. ВАХ диода. Влияние генерации, рекомбинации и объемного сопротивления базы на характеристики реальных диодов. Разновидности и классификация полупроводниковых диодов: выпрямительные диоды, диоды Шоттки, стабилитроны, параметрические диоды и варикапы. Переходные процессы в полупроводниковых диодах. Импульсные диоды, диоды с накоплением заряда, р-і-п- диоды. Диоды для усиления и генерации СВЧ-сигнала: туннельные и обращенные диоды, лавинно-пролетные диоды, диоды Ганна. /Лек/	6/3	6	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.1, Л1.2, Л1.5, Л1.6, Л1.7, Л1.8, Л2.2, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Зачёт.
3.3	Модели биполярных транзисторов. Статические модели. Динамическая модель и динамическая передаточная модели Эберса-Молла. /Пр/	6/3	4	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.1, Л1.2, Л1.5, Л1.6, Л1.7, Л1.8, Л2.2, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Контрольная работа.

3.4	Общие сведения о полупроводниковых диодах. Выпрямление в диоде. Эквивалентная схема диода. ВАХ диода. Влияние генерации, рекомбинации и объемного сопротивления базы на характеристики реальных диодов. Разновидности и классификация полупроводниковых диодов: выпрямительные диоды, диоды Шоттки, стабилитроны, параметрические диоды и варикапы. Переходные процессы в полупроводниковых диодах. Импульсные диоды, диоды с накоплением заряда, р-і-п- диоды. Диоды для усиления и генерации СВЧ-сигнала: туннельные и обращенные диоды, лавинно-пролетные диоды, диоды Ганна. /Ср/	6/3	20	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.1, Л1.2, Л1.5, Л1.6, Л1.7, Л1.8, Л2.2, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Аналитический отчёт. Зачёт.
	Раздел 4. Биполярные транзисторы.					
4.1	Биполярные транзисторы. /Тема/	6/3	0			Аналитический отчёт. Зачёт.
4.2	Принцип работы и классификация биполярных транзисторов. Основные физические процессы в биполярных транзисторах. ВАХ биполярного транзистора Схемы включения и режимы работы биполярных транзисторов. Системы параметров биполярных транзисторов. Статические и динамические характеристики транзистора. Переходные процессы в транзисторе. Транзисторные эффекты: эффект Эрли, Кирка, смыкания эмиттерного и коллекторного переходов, туннельный пробой коллекторного перехода, оттеснения тока эмиттера и др. Составные биполярные транзисторы. Дрейфовые транзисторы. Биполярные транзисторы с гетеропереходами. /Лек/	6/3	6	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.1, Л1.2, Л1.5, Л1.6, Л1.7, Л1.8, Л2.2, Л2.3, Л2.4, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Зачёт.

4.3	Модели биполярных транзисторов. Динамическая	6/3	4	ПК-1.1-3	Л1.1, Л1.2,	Контрольная
4.3	зарядоуправляемая модель. Динамические модели малого сигнала. /Пр/	0/3	+	ПК-1.1-У ПК-1.1-В ПК-2.1-З ПК-2.1-У ПК-2.1-В ПК-2.2-З ПК-2.2-У ПК-2.2-У	Л1.1, Л1.2, Л1.5, Л1.6, Л1.7, Л1.8, Л2.2, Л2.3, Л2.4, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	работа.
4.4	Принцип работы и классификация биполярных транзисторов. Основные физические процессы в биполярных транзисторах. ВАХ биполярного транзистора Схемы включения и режимы работы биполярных транзисторов. Системы параметров биполярных транзисторов. Статические и динамические характеристики транзистора. Переходные процессы в транзисторе. Транзисторные эффекты: эффект Эрли, Кирка, смыкания эмиттерного и коллекторного переходов, туннельный пробой коллекторного перехода, оттеснения тока эмиттера и др. Составные биполярные транзисторы. Дрейфовые транзисторы. Биполярные транзисторы с гетеропереходами. /Ср/	6/3	20	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.1, Л1.2, Л1.5, Л1.6, Л1.7, Л1.8, Л2.2, Л2.3, Л2.4, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Аналитический отчёт. Зачёт.
	Раздел 5. Полевые транзисторы.					
5.1	Полевые транзисторы. /Тема/	7/4	0			Аналитический отчёт. Зачёт.
5.2	Типы и устройство полевых транзисторов. Полевые транзисторы с управляющим р-п-переходом или барьером Шоттки в качестве затвора: принципы работы, конструктивные особенности, параметры и режимы работы. Полевые транзисторы с изолированным затвором - МДП-транзисторы: принципы работы, конструкции, режимы работы. Эквивалентная схема и быстродействие МДП-транзистора. Топологические реализации МДП-транзисторов. Типы МДП-транзисторов для репрограммируемых элементов памяти. Гетероструктурные полевые транзисторы. Тонкопленочные полевые транзисторы. Мощные МДП-транзисторы. Полевые приборы с зарядовой связыю. Размерные и другие эффекты в МДП транзисторах. /Лек/	7/4	6	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-В	Л1.1, Л1.2, Л1.5, Л1.6, Л1.7, Л1.8, Л2.2, Л2.3, Л2.4, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Зачёт.
5.3	Модели полевых транзисторов. Статические модели МДП-транзистора. Динамические модели большого и малого сигнала. /Пр/	7/4	6	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.1, Л1.2, Л1.5, Л1.6, Л1.7, Л1.8, Л2.2, Л2.3, Л2.4, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Контрольная работа.

5 1	Turky vy vozna vozna vozna v zavovozna az	7/4	10	ПГ 1 1 2	П1 1 П1 2	A 110 H11777777 2 21/
5.4	Типы и устройство полевых транзисторов. Полевые транзисторы с управляющим р-п-переходом или барьером Шоттки в качестве затвора: принципы работы, конструктивные особенности, параметры и режимы работы. Полевые транзисторы с изолированным затвором - МДП-транзисторы: принципы работы, конструкции, режимы работы. Эквивалентная схема и быстродействие МДП-транзистора. Топологические реализации МДП-транзисторов. Типы МДП-транзисторов для репрограммируемых элементов памяти. Гетероструктурные полевые транзисторы. Тонкопленочные полевые транзисторы. Мощные МДП-транзисторы. Полевые приборы с зарядовой связью. Размерные и другие эффекты в МДП транзисторах. /Ср/	7/4	18	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.1, Л1.2, Л1.5, Л1.6, Л1.7, Л1.8, Л2.2, Л2.3, Л2.4, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Аналитический отчёт. Зачёт.
	Раздел 6. Полупроводниковые приборы с					
	вольт-амперной характеристикой S-типа.					
6.1	Полупроводниковые приборы с вольт-амперной характеристикой S-типа. /Тема/	7/4	0			Аналитический отчёт. Зачёт.
6.2	Общая характеристика приборов с отрицательным сопротивлением (проводимостью). S-диод. Однопереходный транзистор, Лавинный транзистор. Инжекционно-полевой транзистор. Модуляционный транзистор. Динистор. тиристор. Симистор. /Лек/	7/4	4	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.5, Л1.6, Л1.7, Л1.8, Л2.2, Л2.3, Л2.4, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Зачёт.
6.3	Модели тиристоров. Статические модели. Динамическая двухступенчатая модель тиристора. Динамическая трехэлектродная модель тиристора. /Пр/	7/4	4	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.5, Л1.6, Л1.7, Л1.8, Л2.2, Л2.3, Л2.4, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Контрольная работа.

6.4	Общая характеристика приборов с отрицательным сопротивлением (проводимостью). S-диод. Однопереходный транзистор, Лавинный транзистор. Инжекционно-полевой транзистор. Модуляционный транзистор. Динистор. тиристор. Симистор. /Ср/	7/4	10	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.5, Л1.6, Л1.7, Л1.8, Л2.2, Л2.3, Л2.4, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Аналитический отчёт. Зачёт.
7.1	Раздел 7. Приборы полупроводниковой оптоэлектроники. Приборы полупроводниковой оптоэлектроники.	7/4	0			Аналитический
	/Тема/			HIC 1 1 2	П1 1 П1 2	отчёт. Зачёт.
7.2	Параметры фотоприемников. Полупроводниковые фоторезисторы, фотодиоды, биполярные и полевые фототранзисторы, солнечные элементы. Полупроводниковые источники оптического излучения: светоизлучающие диоды и инжекционные лазеры. /Лек/	7/4	4	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.1, Л1.2, Л1.4, Л1.5, Л1.8, Л1.9, Л2.2, Л2.3, Л2.4, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Зачёт.
7.3	Тепловые процессы в полупроводниковых приборах. Тепловые модели и классификация тепловых режимов полупроводниковых приборов. /Пр/	7/4	2	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.1, Л1.2, Л1.4, Л1.5, Л1.8, Л1.9, Л2.2, Л2.3, Л2.4, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Контрольная работа.
7.4	Параметры фотоприемников. Полупроводниковые фоторезисторы, фотодиоды, биполярные и полевые фототранзисторы, солнечные элементы. Полупроводниковые источники оптического излучения: светоизлучающие диоды и инжекционные лазеры. /Ср/	7/4	5	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.1, Л1.2, Л1.4, Л1.5, Л1.8, Л1.9, Л2.2, Л2.3, Л2.4, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Аналитический отчёт. Зачёт.
	Раздел 8. Полупроводниковые приборы в интегральном исполнении.					
8.1	Полупроводниковые приборы в интегральном исполнении. /Тема/	7/4	0			Аналитический отчёт. Зачёт.
8.2	Особенности конструирования и расчета полупроводниковых приборов в интегральном исполнении. Примеры конструкции и топологии интегральных резисторов, диодов, транзисторов и других элементов интегральных схем. Физические явления, ограничивающие микроминиатюризацию интегральных полупроводниковых элементов. /Лек/	7/4	2	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.1, Л1.2, Л1.9, Л2.2, Л2.3, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Зачёт.

	T					
8.3	Влияние внешних воздействий на параметры	7/4	4	ПК-1.1-3	Л1.1, Л1.2,	Контрольная
	полупроводниковых приборов. /Пр/			ПК-1.1-У	Л1.9, Л2.2,	работа.
				ПК-1.1-В	Л2.3, Л3.1,	
				ПК-2.1-3	Л3.2, Л3.3,	
				ПК-2.1-У	Л3.4,	
				ПК-2.1-В	91, 92, 93,	
				ПК-2.2-3	94, 95, 96, 97	
				ПК-2.2-У	31, 33, 30, 37	
				ПК-2.2-В		
8.4	Особенности конструирования и расчета	7/4	5	ПК-1.1-3	Л1.1, Л1.2,	Аналитический
	полупроводниковых приборов в интегральном			ПК-1.1-У	Л1.9, Л2.2,	отчёт. Зачёт.
	исполнении. Примеры конструкции и топологии			ПК-1.1-В	Л2.3, Л3.1,	
	интегральных резисторов, диодов, транзисторов и			ПК-2.1-3	Л3.2, Л3.3,	
	других элементов интегральных схем. Физические			ПК-2.1-У	Л3.4,	
	явления, ограничивающие микроминиатюризацию			ПК-2.1-В	91, 92, 93,	
	интегральных полупроводниковых элементов./Ср/			ПК-2.2-3	94, 95, 96, 97	
	интегральных полупроводниковых элементов./Ср/			ПК-2.2-У	34, 33, 30, 37	
				ПК-2.2-В		
	Раздал О. Промомутанная аттестання					
	Раздел 9. Промежуточная аттестация.					

9.1	Подготовка к аттестации, иная контактная работа. /Teмa/	6/3	0,55			
9.2	Подготовка курсового проекта /КПКР/	6/3	11,7	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-В	Л1.1, Л1.2, Л1.3, Л1.4, Л1.5, Л1.6, Л1.7, Л1.8, Л1.9, Л2.1, Л2.2, Л2.3, Л2.4, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Контрольные вопросы.
9.3	Прием зачета. /Зачёт/	6/3	8,45	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-В	Л1.1, Л1.2, Л1.3, Л1.4, Л1.5, Л1.6, Л1.7, Л1.8, Л1.9, Л2.1, Л2.2, Л2.3, Л2.4, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Контрольные вопросы.
9.4	Подготовка к аттестации, иная контактная работа. /Тема/	7/4	0,35			
9.5	Подготовка к экзамену /Консультация/	7/4	2	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.1, Л1.2, Л1.3, Л1.4, Л1.5, Л1.6, Л1.7, Л1.8, Л1.9, Л2.1, Л2.2, Л2.3, Л2.4, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	
9.6	Приём экзамена. /экзамен/	7/4	35,65	ПК-1.1-3 ПК-1.1-У ПК-1.1-В ПК-2.1-3 ПК-2.1-У ПК-2.1-В ПК-2.2-3 ПК-2.2-У ПК-2.2-У	Л1.1, Л1.2, Л1.3, Л1.4, Л1.5, Л1.6, Л1.7, Л1.8, Л1.9, Л2.1, Л2.2, Л2.3, Л2.4, Л3.1, Л3.2, Л3.3, Л3.4, Э1, Э2, Э3, Э4, Э5, Э6, Э7	Контрольные вопросы.

5. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Оценочные материалы приведены в приложении к рабочей программе дисциплины (см. документ "Оценочные материалы по дисциплине "Физика полупроводниковых приборов").

	6. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)					
	6.1. Рекомендуемая литература					
	6.1.1. Основная литература					
Nº	Авторы, составители	Заглавие	Издательство, год	Количество/ название ЭБС		

Л1.1	Смирнов, В. И.	Физика полупроводниковых приборов: учебное пособие	Ульяновск: Ульяновский государственный технический университет, 2022. 204 с.	ISBN 978-5-9795-2198-5. URL: https://www.iprbookshop.ru/129294.html
Л1.2	Климовский А.Б.	Физические основы микроэлектроники и наноэлектроники. Физические основы элементной базы полупроводниковой электроники и работы полупроводниковых устройств: учебное пособие	Ульяновск: Ульяновский государственный технический университет, 2021. 103 с.	ISBN 978-5-9795-2147-3. URL: https://www.iprbookshop.ru/121284.html
Л1.3	Романовский М.Н.	Интегральные устройства радиоэлектроники. Ч.1. Основные структуры полупроводниковых интегральных схем: учебное пособие	Томск: Томский государственный университет систем управления и радиоэлектроники, 2022. 91 с.	URL: https://www.iprbookshop.ru/152881.html
Л1.4	Тугов Н.М., Глебов Б.А., Чарыков Н.А.	Полупроводниковые приборы: учебник для вузов	М: Энергоатомиздат, 1990. 576 с.	
Л1.5	Гаман В.И.	Физика полупроводниковых приборов: учебное пособие	Томск: Изд-во том. ун-та. 1989. 336 с.	
Л1.6	Шур М.	Физика полупроводниковых приборов: В 2-х кн.	М: Мир, 1992 г.	
Л1.7	Викулин И.М., Стафеев В.И.	Физика полупроводниковых приборов. 2-е изд., перераб. и доп.	М: радио и связь, 1990. 264 с.	
Л1.8	Зи С.	Физика полупроводниковых приборов: в 2 кн.	М.: Мир, 1984	
Л1.9	Маллер Р., Кейминс Т.	Элементы интегральных схем	М: Мир, 1989. 630 с.	
	1	6.1.2. Дополнительн	ая литература	1
No	Авторы, составители	Заглавие	Издательство, год	Количество/ название ЭБС
Л2.1	Горлов М. И., Сергеев В. А.	Современные диагностические методы контроля качества и надежности полупроводниковых изделий	Ульяновск: Ульяновский государственный технический университет, 2020. 471 с.	ISBN 978-5-9795-2000-1 URL: https://www.iprbookshop.ru/106117.html

№	I Annous compressions	Janwanya	Mayamawa ama a	Количество/
145	Авторы, составители	Заглавие	Издательство, год	количество название ЭБС
Л2.2	Лебедев А. И.	Физика полупроводниковых приборов	Москва: ФИЗМАТЛИТ, 2008. 488 с.	ISBN 978-5-9221-0995-6 URL: https://e.lanbook.com/book/2244
Л2.3	Филиппов В. В., Мицук С. В.	Физика полупроводниковых приборов: учебное пособие	Липецк: Липецкий ГПУ, 2016. 125 с.	ISBN 978-5-88526-787-8. URL: https://e.lanbook.com/book/126986
Л2.4	Гуртов В.А.	Твердотельная электроника: Учеб. пособие. 3-е изд., доп	М: Техносфера, 2008. 512 с.	
		6.1.3. Методические разрабо	тки	
No	Авторы, составители	Заглавие	Издательство, год	Количество/ название ЭБС
Л3.1	Кольцов Г. И., Диденко С. И., Орлова М. Н.	Физика полупроводниковых приборов. Расчет параметров биполярных приборов. Сборник задач: учебное пособие	Москва: МИСИС, 2012. 78 с.	ISBN 978-5-87623-533-6. URL: https://e.lanbook.com/book/47460
Л3.2	Кольцов Г. И., Мадоян С. Г., Диденко С. И.	Теория и расчет полупроводниковых приборов и интегральных схем: методические указания	Москва: МИСИС, 2001. 39 с.	URL: https://e.lanbook.com/book/116661
Л3.3	Кольцов Г. И., Мадоян С. Г., Диденко С. И.	Теория и расчет полупроводниковых приборов: Твердотельная электроника: учебное пособие	Москва: МИСИС, 2010. 83 с.	URL: https://e.lanbook.com/book/116663
Л3.4	Гришаев В. Я., Никишин Е. В.	Физика полупроводниковых приборов: учебно-методическое пособие	Саранск: МГУ им. Н.П. Огарева, 2020. 72 с.	ISBN 978-5-7103-4037-0. URL: https://e.lanbook.com/book/204554

	6.2. Перечень ресурсов информационно-телекоммуникационной сети "Интернет"				
Э1	Сайт кафедры микро- и наноэлектроники РГРТУ: http://www.rsreu.ru/faculties/fe/kafedri/mnel				
Э2	Система дистанционного обучения ФГБОУ ВО «РГРТУ», режим доступа: по паролю: http://cdo.rsreu.ru/				
Э3	Единое окно доступа к образовательным ресурсам, режим доступа: по паролю: http://window.edu.ru/				
Э4	Интернет Университет Информационных Технологий: http://www.intuit.ru/				
Э5	Электронно-библиотечная система «IPRbooks» [Электронный ресурс]. – Режим доступа: доступ из корпоративной сети РГРТУ – свободный, доступ из сети Интернет – по паролю: https://iprbookshop.ru/				
Э6	Электронно-библиотечная система издательства «Лань» [Электронный ресурс]. — Режим доступа: доступ из корпоративной сети РГРТУ — свободный, доступ из сети Интернет — по паролю: https://www.e.lanbook.com				
Э7	Электронная библиотека РГРТУ [Электронный ресурс]. – Режим доступа: из корпоративной сети РГРТУ – по паролю: http://elib.rsreu.ru/				
	6.3. Папанаці, праграммиота обоснанація и ниформаційських справанції у систам				

6.3 Перечень программного обеспечения и информационных справочных систем

6.3.1 Перечень лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства

Наименование	Описание			
Kaspersky Endpoint Security	Коммерческая лицензия			
LibreOffice	Свободное ПО			
NI LabView	Лицензия для образовательных учреждений			
Операционная система Windows	Коммерческая лицензия			
Операционная система Windows XP	Microsoft Imagine, номер подписки 700102019, бессрочно			
Micro-Cap	Коммерческая лицензия			
6.3.2 Перечень информационных справочных систем				
6.3.2.1 Система КонсультантПлюс http://www.consultant.ru				

6.3.2.1	Система КонсультантПлюс http://www.consultant.ru

	7. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)
1	51 учебно-административный корпус. Учебная аудитория для проведения занятий лекционного и семинарского типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации, для самостоятельной работы 30 мест, мультимедиа проектор benQ Pb 6200, доска магнитно-маркерная, компьютер, экран настенный
2	57 учебно-административный корпус. Учебная лаборатория для проведения занятий семинарского типа, групповых и индивидуальных консультаций, лабораторных работ текущего контроля и промежуточной аттестации, оснащенная лабораторным оборудованием 20 мест, мультимедиа проектор Aser X128H, доска магнитно-маркерная, компьютер, 8 лабораторных столов, 3 компьютера ,блоки питания ВИП-009 (7 шт.), ВИП-010(4 шт.),вольтметры В7-21(4 шт.), В7-21A(3 шт.), Ф283, генераторы Г4-165, Г4-81, Г6-27, измеритель Л2-56, лазер ЛГИ-502, осциллографы С1-65, С1-76
3	343 учебно-административный корпус. Учебно-вспомогательная аудитория для хранения и ремонта оборудования 2 компьютера, принтер, сканер, 5 мест

8. МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Методическое обеспечение дисциплины приведено в приложении к рабочей программе дисциплины (см. документ "Методические указания по дисциплине "Физика полупроводниковых приборов").

Оператор ЭДО ООО "Компания "Тензор"

19.09.25 17:51 (MSK)

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ПОДПИСАНО ФГБОУ ВО "РГРТУ", РГРТУ, Литвинов Владимир ЗАВЕДУЮЩИМ Георгиевич, Заведующий кафедрой МНЭЛ КАФЕДРЫ

ПОДПИСАНО Георгиевич, Заведующий кафедрой МНЭЛ

ФГБОУ ВО "РГРТУ", РГРТУ, Литвинов Владимир

19.09.25 17:52 (MSK) Простая подпись

Простая подпись

ЗАВЕДУЮЩИМ ВЫПУСКАЮЩЕЙ КАФЕДРЫ