ПРИЛОЖЕНИЕ 2

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА

Кафедра радиотехнических систем

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ

по дисциплине (модулю)

«Информационные технологии в инженерной практике»

Направление подготовки 11.05.01 «Радиоэлектронные системы и комплексы»

Направленность (профиль) подготовки Радионавигационные системы и комплексы

> Уровень подготовки специалитет

Программа подготовки специалитет

Квалификация выпускника – инженер

Форма обучения – очная

Рязань 2022

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретённых обучающимися на лабораторных работах. При выполнении лабораторных работ применяется система оценки «зачтено – не зачтено». Количество лабораторных работ по каждому модулю определено учебным графиком.

Промежуточный контроль по дисциплине осуществляется проведением зачёта и экзамена. Форма проведения экзамена – устный ответ ПО утвержденным экзаменационным билетам, сформулированным с учетом содержания vчебной дисциплины. В экзаменационный билет включается два теоретических вопроса. В процессе подготовки к устному ответу экзаменуемый может составить в письменном виде план ответа, включающий в себя определения, выводы формул, рисунки.

Шкалы оценивания компетенций (результатов)

- 1) Уровень усвоения материала, предусмотренного программой.
- 2) Умение анализировать материал, устанавливать причинно-следственные связи.
- 3) Качество ответа на вопросы: полнота, аргументированность, убежденность, логичность.
- 4) Содержательная сторона и качество материалов, приведенных в отчетах студента по лабораторным работам, практическим занятиям.
 - 5) Использование дополнительной литературы при подготовке ответов.

Оценка «зачтено» выставляется студенту, который прочно усвоил предусмотренный программный материал; правильно, аргументировано ответил на все вопросы, с приведением примеров; показал глубокие систематизированные знания, владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данного курса, других изучаемых предметов; без ошибок выполнил практическое задание.

Обязательным условием выставленной оценки является правильная речь в быстром или умеренном темпе. Дополнительным условием получения оценки «зачтено» могут стать хорошие успехи при выполнении самостоятельной и контрольной работы, систематическая активная работа на семинарских занятиях.

Оценка «не зачтено» выставляется студенту, который не справился с 50% вопросов и заданий билета, в ответах на другие вопросы допустил существенные ошибки. Не может ответить на дополнительные вопросы, предложенные преподавателем. Целостного представления о взаимосвязях, компонентах, этапах развития культуры у студента нет. Оценивается качество устной и письменной речи, как и при выставлении положительной оценки.

Типовые контрольные задания или иные материалы

Контрольные задания и иные материалы для оценивания знаний, умений, навыков, характеризующих этапы формирования компетенций в процессе освоения программы дисциплины, приводятся в дистанционных учебных курсах «Основы схемотехнического проектирования и моделирования в среде Micro-Cap» и «Информационные технологии в

инженерной практике», которые используются в качестве информационной и методической поддержки учебного процесса, и размещенны в системе дистанционного обучения РГРТУ на базе Moodle по адресу http://cdo.rsreu.ru.

МОДУЛЬ 1

Вопросы к промежуточной аттестации (зачету)

- 1. Правила ввода электрических схем в МС.
- 2. Условные графические обозначения компонентов в МС.
- 3. Правила задания параметров простых аналоговых компонентов в МС.
- 4. Правила задания параметров сложных аналоговых компонентов в МС.
- 5. Правила задания физических величин в МС.
- 6. Правила задания математических выражений физических величин в моделируемой схеме.
- 7. Правила программирования параметров импульсного источника Pulse Source.
- 8. Правила программирования параметров импульсного источника Sine Source.
- 9. Правила программирования параметров импульсного источника Voltage Source.
- 10. Правила программирования параметров импульсного источника Current Source.
- 11. Расчет электрических схем в режиме постоянного тока в МС.
- 12. Расчет электрических схем в режиме переменного тока в МС.
- 13. Вычислить в среде Mathcad заданное преподавателем математическое выражение.
- 14. Выполнить в среде Mathcad операции сложения (вычитания, умножения, транспонирования и др) над заданными преподавателем матрицами.
- 15. Выполнить в среде Mathcad заданные преподавателем операции над комплексными числами.
- 16. Задать в среде Mathcad матрицу, используя ранжированные переменные для определения элементов матрицы.
- 17. Используя команды из меню **Symbolics** программы Mathcad преобразовать (привести подобнае, разложить на множители, упростить) заданное преподавателем математическое выражение.
- 18. Используя программу Mathcad найти аналитическое (численное) решение заданного преподавателем уравнения.
- 19. Используя программу Mathcad решить заданную преподавателем систему уравнений (с использованием аппарата матричных вычислений или блока команд Given/Find.
- 20. Построить в среде Mathcad график заданной преподавателем функции одной (двух) переменной.

МОДУЛЬ 2

Вопросы к промежуточной аттестации (зачету)

- 1. Выбор и задание параметров моделирования в диалоговом окне **Transient Analysis Limits**.
- 2. Вывод результатов моделирования, задание параметров графиков.
- 3. Просмотр и обработка результатов моделирования в режиме Transient.
- 4. Расчет импульсной и переходной характеристик электрических цепей в режиме Transient
- 5. Многовариантный анализ переходных процессов в режиме Stepping.
- 6. Провести анализ переходных процессов в электрической принципиальной схеме в режиме **Transient Analysis.** Получить и исследовать импульсную характеристику,

- переходную характеристику в электрической цепи. Выполнить анализ указанных характеристик в режиме **Stepping.**
- 7. Провести анализ переходных процессов в коммутируемой электрической принципиальной схеме в режиме **Transient Analysis.** Измерить время переходных процессов в цепи. Выполнить анализ указанных характеристик в режиме **Stepping.**
- 8. . Выбор и задание параметров моделирования в диалоговом окне AC Analysis Limits.
- 9. Вывод результатов моделирования, задание параметров графиков.
- 10. Просмотр и обработка результатов моделирования в режиме АС.
- 11. Расчет амплитудно-частотной и фазочастотной характеристик электрических цепей в режиме АС.
- 12. . Многовариантный анализ частотных характеристик в режиме Stepping.
- 13. Провести анализ частотных характеристик в электрических фильтров в режиме **Transient Analysis.** Получить и исследовать амплитудно-частотную и фазочастотную характеристики электрических фильтров. Определить граничные частоты исследуемых фильтров. Выполнить анализ указанных характеристик в режиме **Stepping.**
- 14. Выбор и задание параметров моделирования в диалоговом окне DC Analysis Limits.
- 15. Вывод результатов моделирования, задание параметров графиков.
- 16. Просмотр и обработка результатов моделирования в режиме DC.
- 17. Расчет передаточных функций радиотехнических устройств в режиме DC.
- 18. Многовариантный анализ передаточных функций в режиме Stepping.
- 19. Получить и исследовать передаточные функции электрической схемы в режиме DC.
- 20. Получить и исследовать вольт-амперную характеристику диода.
- 21. Получить и исследовать вольт-амперную характеристику транзистора.
- 22. Вывод графиков характеристик в режиме Probe Transient.
- 23. Вывод графиков характеристик в режиме Probe AC.
- 24. Вывод графиков характеристик в режиме Probe DC.
- 25. Просмотр и обработка результатов моделирования с использованием команд, расположенных в меню Scope/
- 26. Исследовать временные характеристики электрической цепи в режиме **Probe Transient.**
- 27. Исследовать частотные характеристики электрической цепи в режиме **Probe AC**.
- 28. Исследовать частотные характеристики электрической цепи в режиме **Probe DC**.
- 29. Выполнить моделирование в среде Micro Cap заданной преподавателем электрической схемы в режиме **Dynamic DC** (**Dynamic AC**).

Перечень лабораторных работ и вопросов для контроля

	Tiebe tens throughtophisix phoof it sompoeds Atm Kont potts	
№ работы	Название лабораторной работы и вопросы для контроля	Шифр
1	Графический ввод и редактирование электрических схем.	
	1. Какими тремя способами можно ввести в рабочее окно схем	
	компоненты?	
	2. Как задать (изменить) атрибуты простых компонентов схемы?	
	3. Можно ли изменить параметры компонентов, задаваемых	
	атрибутом <model>?</model>	4791
	4. Какие действия выполняются с помощью команд Grid Text,	4/91
	Attribute Text, Node numbers, Pin Connections, Rubberbanding?	
	5. Какому компоненту соответствуют в МС позиционные	
	обозначения: R, C, L, SW, V, I, D, Q?	
	6. Определите значение физической величины компонента или	
	переменной (в системе СИ), заданных преподавателем в форме,	

	V 110	
	принятой в МС.	
	7. Запишите в форме, принятой в МС, значение физической	
	величины компонента или параметра, заданной преподавателем.	
	8. Какому узлу электрической схемы программа МС всегда	
	присваивает нулевой номер?	
	9. Как вывести на экран обозначения «plus» и «minus» выводов	
	простых компонентов?	
	10. Какие параметры задаются для модели ключа SW,	
	управляемого напряжением, током или во времени?	
2	Модели источников сигналов	
	1. Как определить координаты произвольной точки графика?	
	2. Как измерить расстояние по горизонтали (по вертикали)	
	между двумя выбранными точками графика?	
	3. Как задать параметры генератора Pulse Source (Sine Source)?	
	4. Как задать параметры генератора Voltage Source (модели	
	Pulse, Sin, Exp, Gaussian, PWL и Noise)?	
	5. Заданные преподавателем параметры генератора Pulse Source	4791
	пересчитать в параметры генератора Voltage Source (Pulse).	
	6. Заданные преподавателем параметры генератора Voltage Source (Pulse) пересчитать в параметры генератора Pulse	
	Source.	
	7. Заданные преподавателем параметры генератора Sine Source	
	пересчитать в параметры генератора Voltage Source (Sin).	
	8. Заданные преподавателем параметры генератора Voltage	
	Source (Sin) пересчитать в параметры генератора Sine Source.	
3	Расчет электрических схем по постоянному и переменному току в	
	режимах Dynamic DC и Dynamic AC.	
	powindar by name bo n bynamic no.	
	1. Какие параметры электрической схемы можно измерить в	
	режиме Dynamic DC ?	
	2. Как измерить в режиме падение напряжения на	
	сопротивлении компонента?	
	3. Что означают обозначения pg и pd на схеме в режиме	
	Dynamic DC?	
	4. Как вывести на чертеж электрической схемы движковые	
	регуляторы компонентов?	
	5. Какую функцию выполняет опция Place Text в диалоговом	4791
	окне Dynamic DC Limits ?	
	6. Какие параметры электрической схемы можно измерить в	
	режиме Dynamic AC ?	
	7. Как задать частоту генератора на входе электрической схемы в	
	режиме Dynamic AC ?	
	8. Что означают обозначения pg, pd и ps на схеме в режиме Dynamic AC ?	
	9. Что означают опции Fist Value и Second Value в режиме	
	9. что означают опции тът value и зесони value в режиме Dynamic AC ?	
	10. Зачем рекомендуется включать опцию Pin Names компонентов	
	при анализе схемы в режиме переменного тока?	
4	Анализ переходных процессов в электрических схемах в режиме	
	Transient	. — -
	1. Как вводится временной интервал анализа в режиме Transient ?	4791
	2. Как установить необходимую точность анализа в режиме	
<u></u>	2. 1. Jerunomita necessarijie te moeta unuma a pemine	

Transient? 3. Как построить несколько временных графиков в разных графических окнах? 4. Как построить несколько временных графиков в одном графическом окне? 5. Как изменить характер вывода данных (логарифмическая или линейная шкала графиков по осям Х или Ү, цвет графиков)? 6. Что означают переменные V(1), V(R1), V(1,2), I(L1), I(1,2), введенные в графу выражений Y Expression? 7. Как установить автоматическое масштабирование графиков по осям Хи Ү? 8. Как получить несколько графиков при различных параметрах одного из компонентов схемы? 9. Как вывести на график функций, полученных в режиме Stepping, значения варьируемого параметра? 10. Как выделить один из графиков семейства функций, полученных в режиме Stepping? 11. Как установить электронные курсоры в точки графика с заданными координатами по х или у? 12. Как измерить длительность фронта импульса? 13. Как измерить длительность импульса? 14. Как измерить период повторения импульсов? 15. Как измерить амплитуду импульсов? Расчет частотных характеристик электрических схем в режиме АС 5 1. Как вводится частотный диапазон анализа в режиме АС? 2. Как установить необходимую точность анализа в режиме АС? 3. Как построить несколько графиков частотных зависимостей в разных графических окнах? 4. Как построить несколько графиков частотных зависимостей в одном графическом окне? 5. Как изменить характер вывода данных (логарифмическая или линейная шкала графиков по осям Х или Ү, цвет графиков)? 6. Что означают переменные V(1), V(R1), V(1,2), I(L1), I(1,2), введенные в графу выражений Y Expression? 7. Что означают переменные ph(V(1)), ph(V(R1)), ph(V(1,2)), ph(I(L1)), ph(I(1,2)), введенные в графу выражений **Y** Expression? 4791 8. Как установить автоматическое масштабирование графиков по осям Хи Ү? 9. Как получить несколько графиков при различных параметрах одного из компонентов схемы? 10. Как вывести на график функций, полученных в режиме Stepping, значения варьируемого параметра? 11. Как выделить один из графиков семейства функций, полученных в режиме Stepping? 12. Как установить электронные курсоры в точки графика с заданными координатами по х или у? 13. Как измерить резонансную частоту контура? 14. Как измерить верхнюю (нижнюю) граничную фильтра? 15. Как измерить полосу пропускания (режекции) фильтра? Расчет передаточных функций по постоянному току в режиме DC 6 4791 1. Что такое передаточная функция?

	2. Как задать параметры моделирования в режиме DC при одной	
	варьируемой переменной?	
	3. Как задать параметры моделирования в режиме DC при двух	
	варьируемых переменных?	
	4. Какие параметры схемы можно измерить с помощью режима	
	анализа Dynamic DC ?	
	5. Что такое вольт-амперная характеристика?	
	6. Как построить ВАХ диода?	
	7. Как измерить сопротивление диода?	
	8. Объяснить результаты моделирования, полученные в п. 1.3?	
	9. Как построить ВАХ транзистора?	
	10. Как измерить размах сигнала на входе и выходе усилителя?	
7	Просмотр и обработка результатов моделирования в режиме Probe	
	1. Для каких видов анализа в программе МС предусмотрен режим	
	Probe?	
	2. Как построить график анализируемой переменной в режиме	
	Probe Transient (Probe AC или Probe DC)?	
	3. Как в режиме Probe выбрать тип переменных, откладываемых	
	по осям Х и Ү?	
	4. Как удалить график, построенный в режиме Probe ?	
	5. Как выбрать графическое окно для построения графика	
	выбранной переменной?	
	6. Как построить в режиме Probe временную зависимость	4791
	падения напряжения на компоненте электрической схемы?	
	7. Как построить в режиме Probe временную зависимость тока,	
	протекающего через компонент электрической схемы?	
	8. Как построить в режиме Probe модуль выбранной комплексной	
	переменной от частоты?	
	9. Как построить в режиме Probe фазу выбранной комплексной	
	переменной от частоты?	
	10. Как построить диаграмму (годограф), показывающую	
	взаимосвязь между током I(L1) и напряжением V(L1) во время	
	переходного процесса?	
8	Исследование характеристик электрических цепей в среде Місго Сар	
	1/ Моделирование электрической цепи, заданной преподавателем.	
	2. Расчет характеристик электрической цепи в режиме, заданном	4701
	преподавателем	4791
	3. Обработка результатов моделирования и измерение параметров	
	электрической цепи в режиме, заданном преподавателем	
		l .

Контрольные вопросы для оценки сформированности компетенций

- 1. Ввести в графическое окно схем заданную преподавателем принципиальную электрическую схему. Задать параметры компонентов схемы.
- 2. Используя заданные преподавателем параметры импульсной последовательности выполнить программирование параметров импульсного источника Pulse Source.
- 3. Используя заданные преподавателем параметры импульсной последовательности выполнить программирование параметров источника Voltage Source.
- 4. Используя заданные преподавателем параметры синусоидального сигнала выполнить программирование параметров источника Sine Source..
- 5. Используя заданные преподавателем параметры синусоидального сигнала

- выполнить программирование параметров источника Voltage Source.
- 6. Выполнить расчет заданной преподавателем электрической схемы в режиме **Dynamic DC.**
- 7. Выполнить расчет заданной преподавателем электрической схемы в режиме **Dynamic AC.**
- 8. Выполнить моделирование заданной преподавателем электрической схемы в режиме **Transient.**
- 9. Выполнить моделирование заданной преподавателем электрической схемы в режиме АС.
- 10. Выполнить моделирование заданной преподавателем электрической схемы в режиме **DC**.

Составил доцент кафедры РТС к.т.н., с.н.с.

В.П.Косс

Заведующий кафедрой РТС д.т.н., проффесор

В.И.Кошелев