МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «ЭЛЕКТРОННЫЕ ВЫЧИСЛИТЕЛЬНЫЕ МАШИНЫ»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

«Математическая логика»

Направление подготовки 38.03.05 «Бизнес- информатика»

ОПОП академического бакалавриата

ОПОП - «Информационно-аналитическое обеспечение и ITтехнологии в бизнесе»

> Квалификация (степень) выпускника — бакалавр Форма обучения — очная

Оценочные материалы – это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме промежуточной аттестации.

Промежуточная аттестация проводится в форме зачёта. Форма проведения зачёта — тестирование, письменный опрос по теоретическим вопросам и выполнение практических заданий.

Промежуточный контроль по дисциплине осуществляется проведением теоретического зачета.

Показатели и критерии обобщенных результатов обучения

Сформированность каждой компетенции (или ее части) в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1. пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2. продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
 - 3. эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования

Уровень освоения компетенций, формируемых дисциплиной:

Описание критериев и шкалы оценивания тестирования:

Шкала	Критерий	
оценивания	түштерин	
3 балла	уровень усвоения материала, предусмотренного программой: процент	
(эталонный	верных ответов на тестовые вопросы от 85 до 100%	
уровень)		
2 балла	уровень усвоения материала, предусмотренного программой: процент	
(продвинутый	верных ответов на тестовые вопросы от 70 до 84%	
уровень)		
1 балл	уровень усвоения материала, предусмотренного программой: процент	
(пороговый	верных ответов на тестовые вопросы от 50 до 69%	
уровень)		
0 баллов	уровень усвоения материала, предусмотренного программой: процент	
	верных ответов на тестовые вопросы от 0 до 49%	

Описание критериев и шкалы оценивания теоретического вопроса:

Шкала оценивания	Критерий
3 балла	выставляется студенту, который дал полный ответ на вопрос, показал глубокие
(эталонный	систематизированные знания, смог привести примеры, ответил на
уровень)	дополнительные вопросы преподавателя
2 балла	выставляется студенту, который дал полный ответ на вопрос, но на некоторые
(продвинуты	дополнительные вопросы преподавателя ответил только с помощью
й уровень)	наводящих вопросов
1 балл	выставляется студенту, который дал неполный ответ на вопрос в билете и смог
(пороговы	ответить на дополнительные вопросы только с помощью преподавателя
й уровень)	
0 баллов	выставляется студенту, который не смог ответить на вопрос

Описание критериев и шкалы оценивания практического задания:

Шкала оценивания	Критерий
3 балла	Задача решена верно
(эталонный уровень)	

2 балла	Задача решена верно, но имеются неточности в логике решения
(продвинуты	
й уровень)	
1 балл	Задача решена верно, с дополнительными наводящими вопросами
(пороговый уровень)	преподавателя
0 баллов	Задача не решена

На промежуточную аттестацию в форме зачета выносится тест, теоретический вопрос и задача. Максимально студент может набрать 9 баллов. Итоговый суммарный балл студента, полученный при прохождении промежуточной аттестации, переводится в традиционную форму по системе «зачтено» и «незачтено».

3 ПАСПОРТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ ПО ДИСЦИПЛИНЕ

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия
1	Алгебра логики	УК1.1, 1.2	зачет
2	Логические исчисления	УК1.1, 1.2	зачет
3	Алгоритмические модели	УК1.1, 1.2	зачет
4	Сложность алгоритмов	УК1.1, 1.2	зачет

4 ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ

4.1. Промежуточная аттестация в форме зачета

Код компетенции	Результаты освоения ОПОП
	Содержание компетенций
УК -1	Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач
УК 1.1	Осуществляет поиск необходимой информации, подвергает ее критическому анализу и обобщению
	Знать основные понятия математической логики и теории алгоритмов; представления булевых функций и способы минимизации формул; подходы к оценкам сложности алгоритмов; методы построения эффективных алгоритмов; возможности применения общих логических принципов в математике и профессиональной деятельности Уметь находить и исследовать свойства представлений булевых и многозначных функций формулами в различных базисах; Владеть навыками упрощения формул алгебры высказываний и алгебры предикатов;

Типовые тестовые задания

1. Сколько значений может принимать высказывание?

Два из четырех;

Три из четырех;

+Одно из двух;

Два из двух;

2. Какая из приведенных таблиц истинности соответствует операции дизъюнкции?

Х	Υ	X?Y
0	0	0
0	1	0
1	0	0
1	1	1

Х	Υ	X?Y
0	0	1
0	1	1
1	0	0
1	1	1

+

Х	Υ	X?Y
0	0	0
0	1	1
1	0	1
1	1	1

Х	Υ	X?Y
0	0	1
0	1	0
1	0	0
1	1	1

3. Сколько существует вариантов в импликации двух высказываний?

Два;

Пять;

Три;

+Четыре;

4. Укажите закон Де Моргана.

$$avb = bva;$$

$$av(bvc) = (avb)vc; aVa = a;$$

$$+$$
"(avb) = "a π "b;

X	Y	'X	X^Y	'X ^ (X ^ Y)
0	0	1	1	1
0	1	1	1	1
1	0	0	0	1
1	1	0	1	1

5. Сколько строк содержит таблица истинности высказывания, составленного из двух простых высказываний?

+4;

8;

6;

າ.

6. Таблица истинности формулы $X \wedge (X \wedge Y)$ имеет вид:

Эта формула будет:

Тождественно ложной?

+Тождественно истинной?

Общего вида?

7. Таблица истинности формулы $(X \vee Y) \wedge (X \sqcap Y)$ имеет вид:

X	Y	X <	X >	(X ^v Y) O (X ^л Y)
0	0	0	0	1
0	1	1	0	0
1	0	1	0	0
1	1	1	1	1

Будет ли оно:

Логически истинным;

Противоречивым;

+Ни тем, ни другим;

8. Какая функция называется булевой?

Функция f(x1,x2,...,xn) принимающая только значения 0 и 1;

Функция f(x1,x2,...,xn) от n переменных, каждая из которых принимает одно из двух значений 0 или 1;

 $+\Phi$ ункция f(x1,x2,...,xn) принимающая только значения 0 и 1, от n переменных, каждая из которых принимает одно из двух значений 0 или 1;

9. Укажите логическую операцию в ДНФ:

a^(bvc);

+a"bcvbcv"a;

(avb)(-avcv"d)(-avbvc);

10. Сколько строк содержит таблица истинности высказывания, составленного из 3 простых высказываний?

4;

+8;

6;

2;

Типовые практические задания:

Задание 1

2. Упростить формулу

$$(x \to y) \to (\overline{y} \to \overline{x})$$

Критерии выполнения задания 1

Задание считается выполненным, если: обучающийся получил правильный ответ и обосновал последовательность действий.

Задание 2

Доказать тождественную истинность формулы, построив таблицу истинности *Критерии выполнения задания 2*

Задание считается выполненным, если: обучающийся получил правильный ответ и обосновал последовательность действий.

Задание 3

Булева функция задана десятичным номером f^{373} .

Построить многочлен Жегалкина и определить является ли данная функция линейной

Критерии выполнения задания 3

Задание считается выполненным, если: обучающийся построил многочлен Жегалкина и правильно определил характеристику $\Pi\Phi$, обосновав свой ответ.

Код компетенции	Результаты освоения ОПОП
	Содержание компетенций
УК 1.2	Применяет системный подход для решения поставленных задач
	Знать язык и средства современной математической логики; типовые свойства и способы задания функций многозначной логики; различные подходы к определению алгоритма и доказательства алгоритмической неразрешимости отдельных массовых задач; Уметь оценивать сложность алгоритмов и вычислений; классифицировать алгоритмы по классам сложности; применять методы математической логики и теории алгоритмов к решению задач математической кибернетики; Владеть навыками использования языка современной символической логики; навыками применения методов и фактов теории алгоритмов, относящимися к решению переборных задач; навыками составления программ на машинах Тьюринга.

Типовые тестовые вопросы:

1. Булева функция четырех переменных определена на:

```
Четырех наборах;
```

Шести наборах;

Десяти наборах;

+Шестнадцати наборах;

2. Число булевых функций трех аргументов равно;

8;

16;

24;

+256;

3. Укажите правильную запись

$$+\kappa_2 = -x1x2-x3;$$

 $\kappa_2 = x1x2x3;$ $\kappa^2 = x1x2-x3;$ $\kappa^2 = x1-x2x3;$

4. Укажите логическую функцию в КНФ

```
x^(yVz);_ xy
zVxzV y;
+(x lVx4)("x lVx2v"x3)("x lVx2Vx4);
```

5. Булева функция 3-х переменных задана десятичным номером $/2^3$ 1. Укажите значение, равное 1.

```
1, 3, 6;
```

+3, 5, 7;

0, 2, 6;

- 6. Сколько клеток содержит карта Карно булевой функции трех переменных:
 - 4;
 - 6;
 - +8;
 - 10;
- 7. Укажите выражения, которые не являются предикатами.

$$2x \div 5 > 1, x \in Z$$

+ ∀x (x - столица России),

- x Ємножеству наименований европейских городов
- x|y (x, y множество прямых плоскости)

$$\exists x \big(x = 4x - 7 \big) \ ,$$

 $x \in Z$

x и y (x, y - множество наименований европейских городов)

- 8. Укажите тождественно-ложный предикат
- $(x pomб) \rightarrow (x параллелограмм), где x, y ∈ множеству четырехугольников$

$$(x^2 + y^2 > 2) \leftrightarrow (xy < 0), x, y \in R$$
.

$$+(x^4 = 16) \leftrightarrow (x^2 = -2)$$
, где $x \in R$

точка x равноудалена от точек A, B, где $x \in$ множеству точек плоскости

$$(x > 0) \land (y > 0) \land (x + y < 0)$$
, где $x, y \in R$

9. Предваренной формой к формуле $\forall x R(x) \to \exists y Q(y)$ является.

$$+ \exists x \exists y (R(x) \lor Q(y))$$

$$\forall x \exists y \Big(R(x) \land Q(y) \Big)$$

$$\exists x_1 \exists y \Big(R(x_1) \vee Q(y) \Big)$$

$$\forall x \exists y (R(x) \rightarrow Q(y))$$

10. Укажите тавтологию алгебры предикатов (общезначимую формулу).

 $\forall x R(x)$

 $\exists x R(x)$

 $\exists x \exists y R(x, y)$

 $+ P(x) \rightarrow \exists y P(y)$

 $\exists x \forall y R(x, y)$

Типовые практические задания:

Задание 4

Найти М $\underline{\mathcal{J}}\underline{\mathcal{H}}\Phi$ (минимальную $\underline{\mathcal{J}}\underline{\mathcal{H}}\Phi$) с помощью диаграммы Вейча или карты Карно (по выбору) для заданной Б Φ .

f³ I 51

Критерии выполнения задания 4

Задание считается выполненным, если: обучающийся получил правильный ответ и обосновал последовательность действий.

Задание 5

Используя СДНФ найдите булеву функцию, принимающее значение 1 на следубщих наборах переменных, и только на них: f(0, 1, 0) = f(1, 0, 1) = f(1, 1, 1) = 1

Критерии выполнения задания 5

Задание считается выполненным, если: обучающийся получил правильный ответ и обосновал последовательность действий.

Задание 6

Тема: C помощью карты Карно минимизировать логическую функцию заданную десятичным номером

f³ I 67

Критерии выполнения задания 6

Задание считается выполненным, если: обучающийся получил правильный ответ и обосновал последовательность действий.

Задание 7

Приведите к ДНФ формулу $f = ((x \land y))$

Критерии выполнения задания 7

Задание считается выполненным, если: обучающийся получил правильный ответ и обосновал последовательность действий.

Типовые задания и вопросы для зачета по дисциплине

- 1. Логика и ее парадоксы
- 2. Понятие высказывания
- 3. Логика высказываний
- 4. Основные законы логики
- 5. Логический парадокс Рассела
- 6. Алгебра (логика) высказываний
- 7. Формулы алгебры логики
- 8. Равносильные преобразования формул
- 9. Равносильные формулы
- 10. Представление произвольной функции алгебры логики в виде формулы алгебры логики
- 11. Закон двойственности
- 12. Дизъюнктивная нормальная форма и совершенная дизъюнктивная нормальная форма (ДНФ и СДНФ)
- 13. Конъюнктивная нормальная форма и совершенная конъюнктивная нормальная форма (КНФ и СКНФ)
- 14. Определение доказуемой формулы
- 15. Понятие выводимости формулы из совокупности формул
- 16. Правила выводимости
- 17. Алгебра Буля
- 18. Истинные и общезначимые формулы
- 19. Проблема разрешимости
- 20. Логическое следствие
- 21. Силлогизмы
- 22. Язык и правила вывода исчисления высказываний
- 23. Метод резолюций в логике высказываний

- 24. Функции алгебры логики
- 25. Понятие предиката
- 26. Логические операции над предикатами
- 27. Логика предикатов
- 28. Понятие формулы логики предикатов
- 29. Значение формулы логики предикатов
- 30. Равносильные формулы логики предикатов
- 31. Предваренная нормальная форма
- 32. Общезначимость и выполнимость формул
- 33. Пример формулы, выполнимой в бесконечной области и невыполнимой ни в какой конечной области
- 34. Проблема разрешимости для общезначимости и выполнимости, неразрешимость ее в общем случае (без доказательства)
- 35. Алгоритмы распознавания общезначимости формул в частных случаях
- 36. Правила вывода
- 37. Теорема дедукции
- 38. Истинностные значения формул в интерпретации.
- 39. Интерпретации
- 40. Истинность и выполнимость формул. Модели, общезначимость, логическое следствие
- 41. Метод резолюций в логике предикатов
- 42. Язык и правила вывода исчисления предикатов
- 43. Кванторные операции
- 44. Нечеткие подмножества
- 45. Операции над нечеткими подмножествами
- 46. Свойства множества нечетких подмножеств
- 47. Нечеткая логика высказываний
- 48. Понятие алгоритма и вычислимой функции
- 49. Понятие алгоритма и его характерные черты
- 50. Разрешимые и перечислимые множества
- 51. Уточнение понятия алгоритма
- 52. Нормальные алгоритмы Маркова
- 53. Неразрешимые алгоритмические проблемы (обзор)
- 54. Рекурсивные функции
- 55. Примитивно рекурсивные функции
- 56. Частично рекурсивные функции
- 57. Общерекурсивные функции
- 58. Тезис Чёрча
- 59. Машина Тьюринга-Поста
- 60. Вычисления функций на машине Тьюринга-Поста
- 61. Тезис Тьюринга
- 62. Универсальная машина Тьюринга-Поста
- 63. Определение одноленточной машины Тьюринга
- 64. Многоленточные машины Тьюринга

- 65. Примеры невычислимых функций
- 66. Проблема остановки
- 67. Эффективные алгоритмы
- 68. Жадные алгоритмы
- 69. Алгоритмически неразрешимые проблемы
- 70. Понятие о сложности алгоритмов
- 71. Класс задач Р
- 72. Класс задач NP
- 73. Класс NPC
- 74. Недетерминированная машина Тьюринга
- 75. Меры сложности вычислений
- 76. Оценка эффективности вычислительных алгоритмов
- 77. Легко- и трудноразрешимые задачи
- 78. Примеры заведомо трудных задач
- 79. Три типа сложности. Четыре категории чисел по Колмогорову
- 80. Тезис Колмогорова

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СОГЛАСОВАНО **ФГБОУ ВО "РГРТУ", РГРТУ,** Костров Борис Васильевич, Заведующий кафедрой ЭВМ

23.06.25 14:11 (MSK)

Простая подпись