МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Рязанский государственный радиотехнический университет им. В.Ф. Уткина»

Кафедра «Систем автоматизированного проектирования вычислительных средств»

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

по дисциплине

«Разработка системного программного обеспечения»

Направление подготовки 02.04.02 – «Фундаментальная информатика и информационные технологии»

Направленность (профиль) подготовки «Нейросетевые технологии и интеллектуальный анализ данных»

Квалификация выпускника – магистр

Формы обучения – очная

1 ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы – это совокупность учебно-методических материалов (практических заданий, описаний форм и процедур проверки), предназначенных для оценки качества освоения обучающимися данной дисциплины как части ОПОП.

Цель – оценить соответствие знаний, умений и владений, приобретенных обучающимся в процессе изучения дисциплины, целям и требованиям ОПОП в ходе проведения промежуточной аттестации.

Основная задача – обеспечить оценку уровня сформированности компетенций.

Контроль знаний обучающихся проводится в форме промежуточной аттестации.

Промежуточная аттестация проводится в форме зачета. Форма проведения зачета – тестирование, письменный опрос по теоретическим вопросам и выполнение практических заданий.

2 ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Сформированность каждой компетенции (или ее части) в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

Уровень освоения компетенций, формируемых дисциплиной:

Описание критериев и шкалы оценивания тестирования:

Шкала оценивания	Критерий
3 балла	уровень усвоения материала, предусмотренного программой: про-
(эталонный уровень)	цент верных ответов на тестовые вопросы от 85 до 100%
2 балла	уровень усвоения материала, предусмотренного программой: про-
(продвинутый уровень)	цент верных ответов на тестовые вопросы от 70 до 84%
1 балл	уровень усвоения материала, предусмотренного программой: про-
(пороговый уровень)	цент верных ответов на тестовые вопросы от 50 до 69%
0 баллов	уровень усвоения материала, предусмотренного программой: про-
	цент верных ответов на тестовые вопросы от 0 до 49%

Описание критериев и шкалы оценивания теоретического вопроса:

Шкала оценивания	Критерий
3 балла	выставляется студенту, который дал полный ответ на вопрос, пока-
(эталонный уровень)	зал глубокие систематизированные знания, смог привести примеры,
	ответил на дополнительные вопросы преподавателя
2 балла	выставляется студенту, который дал полный ответ на вопрос, но на
(продвинутый уровень)	некоторые дополнительные вопросы преподавателя ответил только с
	помощью наводящих вопросов
1 балл	выставляется студенту, который дал неполный ответ на вопрос в би-
(пороговый уровень)	лете и смог ответить на дополнительные вопросы только с помощью
	преподавателя
0 баллов	выставляется студенту, который не смог ответить на вопрос

Описание критериев и шкалы оценивания практического задания:

Шкала оценивания	Критерий
3 балла	Задача решена верно
(эталонный уровень)	
2 балла	Задача решена верно, но имеются неточности в логике решения
(продвинутый уровень)	
1 балл	Задача решена верно, с дополнительными наводящими вопросами
(пороговый уровень)	преподавателя
0 баллов	Задача не решена

На промежуточную аттестацию в форме зачета выносится тест, один теоретический вопрос и одна задача. Максимально студент может набрать 9 баллов. Итоговый суммарный балл студента, полученный при прохождении промежуточной аттестации, переводится в традиционную форму по системе «зачтено» и «не зачтено».

Оценка «зачтено» выставляется студенту, который набрал в сумме от 3 до 9 баллов. Обязательным условием является выполнение всех предусмотренных в течение семестра лабораторных работ и практических заданий.

Оценка «**не** зачтено» выставляется студенту, который набрал в сумме менее 3 баллов или не выполнил всех предусмотренных в течение семестра лабораторных работ и практических заданий.

3 ПАСПОРТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ ПО ДИСЦИПЛИНЕ

Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия
Тема 1. Организация системного программно-	УК-3, ПК-4	зачет
го обеспечения		
Тема 2. Трансляторы, формальные языки и	УК-3, ПК-4	зачет
грамматики		
Тема 3. Лексический анализ	УК-3, ПК-4	зачет
Тема 4. Синтаксический анализ	УК-3, ПК-4	зачет
Тема 5. Семантический анализ	УК-3, ПК-4	зачет
Тема 6. Оптимизация программ и генерация	УК-3, ПК-4	зачет
кода.		

4 ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ

4.1. Промежуточная аттестация в форме экзамена

Код компетенции	Результаты освоения ОПОП	
	Содержание компетенций	
УК-3	Способен организовывать и руководить работой команды, вырабаты-	
	вая командную стратегию для достижения поставленной цели	
УК-3.1. Распределяет роли внутри проектной команды		
УК-3.2. Формулирует цели, задачи, стратегию действий для проектной команды		
УК-3.3. Применяет специализированные программные средства для организации работы про-		
ектной команды		
ПК-4	Способен осуществлять организацию процессов разработки компью-	
	терного программного обеспечения	
ПК-4.1. Выполняет управление процессами проектирования и разработки компьютерного про-		
граммного обеспечения		
ПК-4.2. Выполняет управление конфигурациями и выпусками программного продукта		

Типовые тестовые вопросы

Наименование секции: Формальные языки и грамматики

Вопрос 1. Формальные грамматики делятся на 4 типа:

тип 0 - грамматики общего вида

тип 1 – контекстно-зависимые грамматики

тип 2 – контекстно-свободные грамматики

тип 3 – регулярные (автоматные) грамматики

Как называется такая классификация? Ответ: иерархия Хомского

Bonpoc 2. Укажите признаки, по которым производится классификация формальных грамматик в иерархии Хомского. Ответы:

- 1. Расположение терминальных символов в продукциях
- 2. Количество нетерминальных символов в описании грамматики
- +3. Форма продукций грамматики

Вопрос 3. Какие грамматики используются для описания синтаксиса языков САПР. Ответы:

- +1. Контекстно-свободные грамматики
- 2. Контекстно-зависимые грамматики
- +3. Регулярные (автоматные) грамматики

Bonpoc 4. Какие грамматики используются для описания синтаксической структуры отдельных лексем языков САПР. Ответы:

- 1. Контекстно-зависимые грамматики
- 2. Контекстно-свободные грамматики
- +3. Регулярные (автоматные) грамматики

Bonpoc 5. Какие грамматики используются для описания синтаксической структуры арифметических и логических выражений языков САПР. Ответы:

- 1. Контекстно-зависимые грамматики
- +2. Контекстно-свободные грамматики
- 3. Регулярные (автоматные) грамматики

Вопрос 6. Какие грамматики можно использовать для анализа корректности скобочных структур языков САПР. Ответы:

- 1. Контекстно-зависимые грамматики
- 2. Регулярные (автоматные) грамматики
- +3. Контекстно-свободные грамматики

Bonpoc 7. Укажите ограничения, которым должны удовлетворять продукции регулярных грамматик. Ответы:

- 1. А \rightarrow β, где А \in N, β \in (N \cup T)*
- $+2. A \rightarrow a \mid aB$ или $A \rightarrow a \mid Ba$, где $A,B \in N$, $a \in T$
- 3. $\alpha \rightarrow \beta$, где $\alpha \in (N \cup T)^+$, $\beta \in (N \cup T)^*$ и $|\alpha| \le |\beta|$, если $\beta \in (N \cup T)^+$

Bonpoc 8. Укажите ограничения, которым должны удовлетворять продукции КС-грамматик. Ответы:

- +1. А \rightarrow β, где А \in N, β \in (N \cup T)*
- 2. $\alpha \rightarrow \beta$, где $\alpha \in (N \cup T)^+$, $\beta \in (N \cup T)^*$ и $|\alpha| \le |\beta|$, если $\beta \in (N \cup T)^+$
- 3. $A \rightarrow a \mid aB$ или $A \rightarrow a \mid Ba$, где $A,B \in N$, $a \in T$

Вопрос 9. Укажите тип следующей формальной грамматики:

$$S \rightarrow aS \mid aB$$

 $B \rightarrow bB \mid b \mid bS$

Ответы:

- 1. Контекстно-зависимая грамматика
- 2. Контекстно-свободная грамматика
- +3. Регулярная (автоматная) грамматика

Вопрос 10. Какие из указанных цепочек порождаются следующей формальной грамматикой

$$S \rightarrow aS \mid aB$$

 $B \rightarrow bB \mid b \mid bS$

Ответы:

- +1. abbaaaab
- +2. ababab
- 3. aabbaba

Bonpoc 11. Какие из указанных цепочек не являются предложениями языка, задаваемого следующей формальной грамматикой

$$S \rightarrow aS \mid aB$$

 $B \rightarrow bB \mid b \mid bS$

Ответы:

- +1. babaab
- 2. aababbab
- +3. aaaabaaa

Bonpoc 12. Принадлежит ли цепочка ababbba языку L(G), синтаксис которого задается следующей грамматикой G:

$$S \rightarrow aS \mid aB$$

$$B \rightarrow bB | b | bS$$

Введите «да» или «нет». Ответ: нет

Bonpoc 13. Принадлежит ли цепочка аааbbab языку L(G), синтаксис которого задается следующей грамматикой G:

$$S \rightarrow aS \mid aB$$

 $B \rightarrow bB \mid b \mid bS$

Введите «да» или «нет». Ответ: да

Вопрос 14. Укажите тип следующей формальной грамматики

$$S \rightarrow A | S+A | S-A$$

 $A \rightarrow B | A*B | A/B$
 $B \rightarrow a | b | c | d | (S)$

Ответы:

- 1. Контекстно-зависимая грамматика
- +2. Контекстно-свободная грамматика
- 3. Регулярная (автоматная) грамматика

Bonpoc 15. Какие из указанных цепочек являются предложениями языка, синтаксис которого задается следующей грамматикой

$$S \rightarrow A \mid S+A \mid S-A$$

 $A \rightarrow B \mid A*B \mid A/B$
 $B \rightarrow a \mid b \mid c \mid d \mid (S)$

Ответы:

- 1. a+b*c(d-a)
- +2. (d+a*c)/(a-b)
- 3. (a)*(b+c)/2

Bonpoc 16. Какие из указанных цепочек не являются предложениями языка, синтаксис которого задается следующей грамматикой

$$S \rightarrow A \mid S + A \mid S - A$$

 $A \rightarrow B \mid A * B \mid A / B$
 $B \rightarrow a \mid b \mid c \mid d \mid (S)$

Ответы:

- +1. a*(b+2)/c
- 2. b+c*(d/(a))
- +3. (c-d)(a+b)/a

Вопрос 17. Какие из приведенных утверждений являются верными для следующего описания синтаксических конструкций:

Ответы:

- 1. Структура синтаксических конструкций задана в форме Бэкуса-Наура
- +2. Структура синтаксических конструкций задана в расширенной форме Бэкуса-Наура
- +3. Структура синтаксических конструкций может быть задана КС-грамматикой

Bonpoc 18. Какие из приведенных утверждений являются неверными для следующего описания синтаксических конструкций:

Ответы:

- +1. Структура синтаксических конструкций задана в форме Бэкуса-Наура
- 2. Структура синтаксических конструкций задана в расширенной форме Бэкуса-Наура
- +3. Структура синтаксических конструкций может быть задана регулярной грамматикой

Вопрос 19. Укажите тип следующей формальной грамматики:

$$E \rightarrow T \mid +T \mid -T$$

 $T \rightarrow F \mid F^*T$
 $F \rightarrow a \mid b \mid c \mid (E)$

Ответы:

- 1. Контекстно-зависимая грамматика
- +2. Контекстно-свободная грамматика
- 3. Регулярная (автоматная) грамматика

Вопрос 20. Введите начальный символ, который имеет следующая формальная грамматика:

$$E \rightarrow T \mid +T \mid -T$$

 $T \rightarrow F \mid F^*T$
 $F \rightarrow a \mid b \mid c \mid (E)$

Ответ: Е

Вопрос 21. Задана формальная грамматика:

$$E \rightarrow T \mid +T \mid -T$$

 $T \rightarrow F \mid F^*T$
 $F \rightarrow a \mid b \mid c \mid (E)$

Введите описание конструкции E в форме Бэкуса-Наура. Ответ: <E>::=<T>|+<T>|-<T>

Вопрос 22. Задана формальная грамматика:

$$E \rightarrow T \mid +T \mid -T$$

 $T \rightarrow F \mid F^*T$
 $F \rightarrow a \mid b \mid c \mid (E)$

Введите описание конструкции E в расширенной форме Бэкуса-Наура. Ответ: $\langle E \rangle$::=[+|-] $\langle T \rangle$ или $\langle E \rangle$::=[(+|-)] $\langle T \rangle$

Вопрос 23. Задана формальная грамматика:

$$E \rightarrow T \mid +T \mid -T$$

 $T \rightarrow F \mid F^*T$
 $F \rightarrow a \mid b \mid c \mid (E)$

Какое из следующих описаний конструкции Т в расширенной форме Бэкуса-Наура является правильным? Ответы:

Вопрос 24. Укажите тип следующей формальной грамматики:

$$S \rightarrow aS \mid aB$$

 $B \rightarrow bB \mid b$

Ответы:

- 1. Контекстно-зависимая грамматика
- 2. Контекстно-свободная грамматика
- +3. Регулярная (автоматная) грамматика

Вопрос 25. Задана грамматика, порождающая все двоичные строки:

$$S \rightarrow S0|S1|0|1$$

Сколько дуг будет иметь диаграмма состояний конечного автомата, построенного по этой грамматике и распознающего двоичные строки? Введите число дуг. Ответ: 4

Вопрос 26. Какие из перечисленных метасимволов используются в форме Бэкуса-Наура? Ответы:

- +1. "<" и ">"
- 2. "[" и "]"
- 3. "{" и "}"

Вопрос 27. Какие из перечисленных метасимволов не используются в форме Бэкуса-Наура? Ответы:

- +1. "[" и "]"
- 2. "<" и ">"
- +3. "(" и ")"

Вопрос 28. Какие из перечисленных метасимволов используются в расширенной форме Бэкуса-Наура для определения альтернативных элементов синтаксических конструкций? Ответы:

- 1. "[" и "]"
- 2. "<" и ">"
- +3. "(" и ")"

Вопрос 29. Какие из перечисленных метасимволов используются в расширенной форме Бэкуса-Наура для определения элементов синтаксических конструкций, которые могут отсутствовать? Ответы:

- +1. "[" и "]"
- 2. "<", и ">"
- 3. "(" и ")"
- +4. "{" и "}"

Наименование секции: Анализ исходной программы в трансляторах

Вопрос 1. Можно ли использовать нисходящие методы синтаксического анализа для языков, порождаемых следующей формальной грамматикой

$$S \rightarrow A | S + A | S - A$$

 $A \rightarrow B \mid A*B \mid A/B$

 $B \rightarrow a |b| c |d| (S)$

Введите «да» или «нет». Ответ: нет

Вопрос 2. Можно ли использовать нисходящие методы синтаксического анализа для языков, порождаемых следующей формальной грамматикой

$$S \rightarrow A \mid A+S \mid A-S$$

 $A \rightarrow B \mid B*A \mid B/A$

 $B \rightarrow a|b|c|d|(S)$

Введите «да» или «нет». Ответ: да

Вопрос 3. Среди перечисленных ниже классов лексем, распознаваемых на фазе лексического анализа, укажите бесконечные классы. Ответы:

- 1. Зарезервированные слова
- +2. Идентификаторы
- 3. Символы операций

+4. Метки

Bonpoc 4. Среди перечисленных ниже классов лексем, распознаваемых на фазе лексического анализа, укажите конечные классы. Ответы:

- +1. Ключевые слова
- 2. Идентификаторы
- 3. Константы
- +4. Разделители

Вопрос 5. Наиболее удобной формой представления функции переходов распознающего конечного автомата (КА) при программировании лексического анализатора является? Ответы:

- 1. Список команд вида (q[i], x) \rightarrow q[j], где q[i], q[j] состояния КА, x терминальный символ используемой грамматики
- 2. Диаграмма состояний
- +3. Матрица переходов

Bonpoc 6. Какие информационные таблицы транслятора используются при формировании потока образов лексем? Ответы:

- +1. Таблица имен
- +2. Таблица констант
- 3. Таблица вложенности блоков программы

Bonpoc 7. Результатом работы лексического анализатора является поток образов лексем, включающих два параметра:

(тип лексемы, спецификатор).

Какой из указанных параметров однозначно идентифицирует лексему из бесконечного класса? Введите «тип» или «спецификатор» . Ответ: спецификатор

Bonpoc 8. Каким элементам из перечисленных соответствуют сроки матрицы переходов конечного автомата, распознающего лексемы языка? Ответы:

- 1. Продукциям используемой грамматики
- 2. Терминальным символам используемой грамматики
- +3. Нетерминальным символам используемой грамматики

Вопрос 9. Каким элементам из перечисленных соответствуют столбцы матрицы переходов конечного автомата, распознающего лексемы языка? Ответы:

- 1. Нетерминальным символам используемой грамматики
- +2. Возможным символам входной цепочки
- 3. Терминальным символам используемой грамматики

Вопрос 10. Элементам какого множества из перечисленных ниже соответствуют вершины диаграммы состояний конечного автомата, распознающего лексемы некоторого языка. Ответы:

- 1. Множеству продукций грамматики
- 2. Множеству терминальных символов грамматики
- +3. Множеству нетерминальных символов грамматики

Вопрос 11. Пусть синтаксис лексем некоторого языка САПР описывается регулярной грамматикой G=(N,T,P,S), где x=|N|, y=|T|, z=|P| - количество нетерминальных символов, терминальных символов и правил вывода соответственно. Введите число вершин, которые будет иметь диаграмма состояний распознающего конечного автомата, построенного на основе такой грамматики. Ответ: x+1

Вопрос 12. Пусть синтаксис лексем некоторого языка САПР описывается регулярной грамматикой G=(N,T,P,S), где x=|N|, y=|T|, z=|P| - количество нетерминальных символов, терминальных символов и правил вывода соответственно.Введите число дуг, которые будет иметь диаграмма состояний распознающего конечного автомата, построенного на основе такой грамматики. Ответ: z

Вопрос 13. Пусть синтаксис лексем некоторого языка САПР описывается регулярной грамматикой G=(N,T,P,S), где x=|N|, y=|T|, z=|P| - количество нетерминальных символов, терминальных символов и правил вывода соответственно. Введите число строк, которые будет иметь матрица переходов распознающего конечного автомата, построенного на основе такой грамматики. Ответ: x+1

Вопрос 14. Результатом грамматического разбора фрагмента программы является? Ответы:

- 1. Последовательность лексем
- +2. Дерево вывода
- 3. Семантическое дерево

Вопрос 15. По какому признаку классифицируют методы синтаксического анализа? Ответы:

- 1. По скорости распознавания грамматических конструкций
- 2. По типу используемой грамматики
- +3. По порядку построения дерева разбора

Bonpoc 16. К какому классу методов синтаксического анализа относится метод операторного предшествования? Ответы:

- 1. Нисходящие (разбор сверху вниз)
- +2 Восходящие (разбор снизу вверх)

Bonpoc 17. К какому классу методов синтаксического анализа относится метод грамматического разбора с возвратами? Ответы:

- +1. Нисходящие (разбор сверху вниз)
- 2 Восходящие (разбор снизу вверх)

Bonpoc 18. Чем принципиально отличаются нисходящие и восходящие методы синтаксического анализа? Ответы:

- 1. Уровнем сложности распознаваемых грамматических конструкций
- 2. Направлением просмотра последовательности лексем при анализе
- +3. Направлением построения дерева грамматического разбора

Вопрос 19. Какие ограничения на форму продукций КС-грамматик являются обязательными для применения нисходящих методов грамматического разбора? Ответы:

- +1. Отсутствие левой рекурсии
- 2. Отсутствие двух соседних нетерминалов в правых частях продукций
- 3. Отсутствие двух соседних терминалов в правых частях продукций

Bonpoc 20. Какие из перечисленных требований к форме продукций грамматик являются обязательными для применения метода операторного предшествования? Ответы:

- 1. Отсутствие левой рекурсии
- +2. Отсутствие двух соседних нетерминалов в правых частях продукций
- 3. Отсутствие двух соседних терминалов в правых частях продукций

Bonpoc 21. Укажите абстрактный тип данных, который используется в алгоритме анализа скобочных структур общего вида. Ответы:

- 1. Список
- +2. Стек
- 3. Очередь

Bonpoc 22. Для грамматики предшествования операторов укажите отношения предшествования, возможные между терминальными символами х и у, которые соответствуют лексемам языка, принадлежащим разным синтаксическим конструкциям. Ответы:

- 1. Отношение предшествования между х и у не существует
- +2. Терминал х предшествует терминалу у
- +3. Терминал у предшествует терминалу х
- 4. Терминалы х и у имеют равный уровень предшествования

Вопрос 23. Для грамматики предшествования операторов укажите отношения предшествования, возможные между терминальными символами х и у, которые соответствуют лексемам языка, принадлежащим одной синтаксической конструкции. Ответы:

- 1. Отношение предшествования между х и у не существует
- 2. Терминал х предшествует терминалу у
- 3. Терминал у предшествует терминалу х
- +4. Терминалы х и у имеют равный уровень предшествования

Вопрос 24. Укажите условие, которому должны удовлетворять терминальные символы x, y ∈ T грамматики предшествования операторов G=(N,T,P,S), для которых $x < \cdot y$. Ответы:

- 1. $(A \rightarrow \alpha xy\beta) \in P$ или $(A \rightarrow \alpha xBy\beta) \in P$, где $A,B \in N$ и $\alpha,\beta \in (N \cup T)^*$
- +2. (A→ α xB β) ∈ P и B⇒+ уу или В⇒+ Суу, где A,B,С ∈ N и α , β , γ ∈ (N \cup T)*
- 3. $(A \rightarrow \alpha B y \beta) \in P$ и $B \Rightarrow + \gamma x$ или $B \Rightarrow + \gamma x C$, где $A,B,C \in N$ и $\alpha,\beta,\gamma \in (N \cup T)^*$

Вопрос 25. Укажите условие, которому должны удовлетворять терминальные символы x, y ∈ T грамматики предшествования операторов G=(N,T,P,S), для которых x > y. Ответы:

- 1. (A→ α ху β) ∈ P или (A→ α хBу β) ∈ P, где A,B ∈ N и α , β ∈ (N∪T)*
- +2. (A→ α By β) ∈ P и B⇒+ γ х или B⇒+ γ хC, где A,B,C ∈ N и α , β , γ ∈ (N \cup T)*
- 3. (А \rightarrow ахВ β) \in Р и В \Rightarrow + уу или В \Rightarrow + Суу, где А,В,С \in N и а, β , γ \in (N \cup T)*

Вопрос 26. Укажите условие, которому должны удовлетворять терминальные символы $x, y \in T$ грамматики предшествования операторов G=(N,T,P,S), которые имеют равный уровень предшествования. Ответы:

- 1. (А \rightarrow αхВβ) ∈ Р и В \Rightarrow + уу или В \Rightarrow + Суу, где А,В,С ∈ N и α,β,у ∈ (N \cup T)*
- 2. (А $\rightarrow \alpha$ Ву β) \in Р и В \Rightarrow + γ х или В \Rightarrow + γ хС, где А,В,С \in N и α , β , γ \in (N \cup T)*
- +3. ($A \rightarrow \alpha xy\beta$) $\in P$ или ($A \rightarrow \alpha xBy\beta$) $\in P$, где $A,B \in N$ и $\alpha,\beta \in (N \cup T)^*$

Bonpoc 27. Какую ширину укладки будет иметь дерево, заданное следующим списком предков: TREE = (0,1,1,1,3,3,3)? Введите число. Ответ: 2

 $Bonpoc\ 28$. Какую ширину укладки будет иметь дерево, заданное следующим списком предков: TREE = (0,1,1,2,2,5,5)? Введите число. Ответ: 1

Наименование секции: Синтез объектной программы в трансляторах

Bonpoc 1. Какие фазы трансляции программ, перечисленные ниже, могут отсутствовать в реальных компиляторах? Ответы:

- 1. Лексический анализ
- 2. Синтаксический и семантический анализ
- +3. Машинно-независимая оптимизация программы
- 4. Генерация машинного кода
- +5. Машинно-зависимая оптимизация программы

Bonpoc 2. На какой фазе трансляции выполняется синтез внутренней формы представления программы? Ответы:

- 1. Лексический анализ
- +2. Синтаксический и семантический анализ
- 3. Машинно-независимая оптимизация программы
- 4. Генерация машинного кода
- 5. Машинно-зависимая оптимизация программы

Bonpoc 3. Какие из перечисленных элементов включают внутренние формы представления программ в трансляторах? Ответы:

- 1. Нетерминальные символы грамматики
- +2. Операнды
- 3. Металингвистические переменные
- 4. Основные символы языка
- +5. Операторы

Bonpoc 4. Укажите обязательные условия, которым должно удовлетворять семантическое дерево. Ответы:

- 1. Корень дерева соответствует начальному символу грамматики
- +2. Листья дерева соответствуют терминальным символам
- 3. Внутренние вершины соответствуют нетерминальным символам

Вопрос 5. Какие из следующих утверждений верные? Ответы:

- 1. Семантическое дерево определяет корректность конструкции языка
- 2. Семантическое дерево определяет линейный порядок выполнения операторов
- +3. Семантическое дерево определяет частичный порядок выполнения операторов

Вопрос 6. Какие из следующих утверждений неверные? Ответы:

- +1. Польская запись определяет корректность конструкции языка
- 2. Польская запись определяет линейный порядок выполнения операторов
- +3. Польская запись определяет частичный порядок выполнения операторов

Bonpoc 7. Укажите алгоритм обхода семантического дерева, позволяющий получить польскую запись конструкции языка. Ответы:

- 1. Обход в прямом порядке
- +2. Обход в обратном порядке
- 3. Симметричный обход

Bonpoc 8. Укажите алгоритм обхода семантического дерева, позволяющий получить префиксную запись конструкции языка. Ответы:

- +1. Обход в прямом порядке
- 2. Обход в обратном порядке
- 3. Симметричный обход

Вопрос 9. Какое из перечисленных выражений имеет следующую префиксную форму записи: +a+*bcd

Ответы:

- 1. (a+b)*c+d
- 2. a+b*c+d
- +3. a+(b*c+d)

Вопрос 10. Какое из перечисленных выражений имеет следующую постфиксную форму записи:

$$xyx*+y-a/$$

Ответы:

- 1. (x+y)*(x-y)/a
- +2. (x+y*x-y)/a
- 3. x+(y*x-y/a)

Вопрос 11. Условный оператор вида

IF <выражение> THEN <оператор1> ELSE <оператор2>

в польской записи представляется следующим образом:

<выражение><адрес1>JMZ<оператор1><адрес2>JM<оператор2>

где JMZ – оператор условного перехода по нулевому значению,

JM — оператор безусловного перехода. Укажите, что адресует элемент польской записи <aдpec1>.

Ответы:

- 1. Адрес первого элемента польской записи конструкции <оператор1>
- 2. Адрес последнего элемента польской записи конструкции <оператор1>
- +3. Адрес первого элемента польской записи конструкции <оператор2>
- 4. Адрес последнего элемента польской записи конструкции <оператор2>

Вопрос 12. Условный оператор вида

IF <выражение> THEN <оператор1> ELSE <оператор2>

в польской записи представляется следующим образом:

<выражение><адрес1>JMZ<оператор1><адрес2>JM<оператор2>

где JMZ – оператор условного перехода по нулевому значению,

JM — оператор безусловного перехода. Укажите, что адресует элемент польской записи <appec2>.

Ответы:

- 1. Адрес первого элемента польской записи конструкции <оператор2>
- 2. Адрес последнего элемента польской записи конструкции <оператор2>
- +3. Адрес первого элемента польской записи, следующего за конструкцией <оператор2>

Вопрос 13. Какие элементы программных конструкций сохраняются в стеке в алгоритме Дейкстры получения польской записи? Ответы:

- +1. Операторы
- 2. Операнды
- +3. Левые скобки
- 4. Правые скобки

Вопрос 14. Какие элементы программных конструкций сохраняются в стеке в алгоритме вычисления выражений, представленных в польской записи? Ответы:

- 1. Операторы
- +2. Значения исходных переменных
- +3. Значения временных переменных

Bonpoc 15. В алгоритме Дейкстры получения польской записи при сохранении очередного оператора в стеке он может "вытолкнуть" из стека другие операторы. Какие? Ответы:

- +1. С большим приоритетом, чем записываемый в стек оператор
- 2. С меньшим приоритетом, чем записываемый в стек оператор
- +3. С приоритетом, равным приоритету записываемого в стек оператора

Вопрос 16. Какая форма внутреннего представления программ в трансляторах является наиболее удобной для выполнения машинно-независимой оптимизации линейных участков программ. Ответы:

- 1. Семантическое дерево
- 2. Польская запись
- +3. Тетрадная форма

Вопрос 17. Какая форма внутреннего представления программ в трансляторах является наиболее удобной для выполнения машинно-независимой оптимизации циклических участков программ. Ответы:

- 1. Семантическое дерево
- +2. Список тетрад
- 3. Польская запись

Вопрос 18. Укажите возможные цели машинно-независимой оптимизации программ. Ответы:

- +1. Уменьшение числа одновременно занимаемых регистров
- 2. Сокращение длины объектного кода
- +3. Повышение скорости работы программы.

Вопрос 19. Укажите возможные цели машинно-зависимой оптимизации программ. Ответы:

- 1. Ускорение работы циклических участков программ
- +2. Сокращение длины кода путем удаления избыточных команд
- +3. Уменьшение числа используемых ячеек памяти

Bonpoc 20. Как называется конфликтная ситуация, когда результаты вычисления хеш-функции для нескольких идентификаторов совпадают и они претендуют на размещение в таблице имен под одним индексом? Введите слово, определяющее название такой ситуации. Ответ: коллизия

Bonpoc 21. При какой организации таблицы имен идентификаторы записываются в эту таблицу в порядке их поступления (например, по возрастанию индексов)? Ответы:

- +1. Неупорядоченные таблицы
- 2. Упорядоченные таблицы
- 3. Таблицы с хеш-адресацией и разрешением коллизий рехешированием
- +4. Таблицы с хеш-адресацией и разрешением коллизий по методу цепочек

Bonpoc 22. При какой организации информационной таблицы транслятора предполагается ее фиксированный объем? Ответы:

- 1. Неупорядоченные таблицы
- 2. Упорядоченные таблицы
- +3. Таблицы с хеш-адресацией и разрешением коллизий рехешированием
- 4. Таблицы с хеш-адресацией и разрешением коллизий по методу цепочек

Вопрос 23. Какой из перечисленных методов рехеширования является наиболее быстрым? Ответы:

1. Линейное рехеширование

- 2. Квадратичное рехеширование
- 3. Случайное рехеширование
- +4. Рехеширование сложением

Вопрос 24. Для какого способа рехеширования справедлива следующая оценка среднего числа сравнений E = (1 - 0.5k) / (1 - k) при поиске идентификатора в таблице имен с хеш-адресацией? Здесь k = N / n — коэффициент заполнения таблицы, учитывающий ее размер N и число n непустых элементов. Ответы:

- +1. Линейное рехеширование
- 2. Квадратичное рехеширование
- 3. Случайное рехеширование
- 4. Рехеширование сложением

Вопрос 25. Для какого способа рехеширования справедлива следующая оценка среднего числа сравнений $E = -(1/k)\log_2(1-\kappa)$ при поиске идентификатора в таблице имен с хешадресацией? Здесь k = N/n — коэффициент заполнения таблицы, учитывающий ее размер N и число n непустых элементов. Ответы:

- 1. Линейное рехеширование
- 2. Квадратичное рехеширование
- +3. Случайное рехеширование
- 4. Рехеширование сложением

Bonpoc 26. От каких из перечисленных факторов в информационных таблицах с хешадресацией зависит количество возникающих коллизий при их разрешении по методу цепочек? Ответы:

- 1. Размер таблицы
- +2. Размер массива адресов
- 3. Скорость вычисления хеш-функции

Вопрос 27. От каких из перечисленных факторов в информационных таблицах с хешадресацией не зависит количество возникающих коллизий при их разрешении по методу рехеширования? Ответы:

- 1. Способ рехеширования
- 2. Размер таблицы
- +3. Скорость вычисления хеш-функции

Типовые практические задания

Задание 1. Задана формальная грамматика следующего вида

- а) определить тип грамматики;
- б) вывести цепочку ааааbb и построить дерево грамматического разбора;
- в) описать язык, порождаемый этой грамматикой, с использованием аппарата теории множеств.

Задание 2. Задана формальная грамматика следующего вида

$$S \rightarrow aS \mid aB$$

 $B \rightarrow bB \mid b \mid bS$

а) определить тип грамматики;

б) вывести цепочку abbaaaab и построить дерево грамматического разбора.

Задание 3. Задана формальная грамматика следующего вида

$$E \rightarrow T \mid E+T \mid E-T$$

 $T \rightarrow F \mid T*F \mid T/F$
 $F \rightarrow x \mid y \mid z \mid (E)$

- а) определить тип грамматики;
- б) вывести цепочку х-у-z+z*х и построить дерево грамматического разбора;
- в) построить семантическое дерево.

Задание 4. Задана формальная грамматика следующего вида

$$S\rightarrow A \mid S+A \mid S-A$$

 $A\rightarrow B \mid A*B \mid A/B$
 $B\rightarrow a \mid b \mid c \mid d \mid (S)$

- а) определить тип грамматики;
- б) вывести цепочку х-у-z+z*х и построить дерево грамматического разбора;
- в) построить семантическое дерево.

Задание 5. Задано описание грамматической конструкции некоторого формального языка в расширенной форме Бэкуса-Наура (РБНФ):

Построить синтаксические диаграммы для металингвистических переменных <A>, ν <C>, а также совмещенную диаграмму для <A>, если это возможно.

Задание 6. Задана формальная грамматика следующего вида

$$E \rightarrow T \mid +T \mid -T$$
$$T \rightarrow F \mid T * F$$
$$F \rightarrow x \mid (E)$$

- а) определить тип грамматики;
- б) представить описание грамматики в расширенной форме Бэкуса-Наура (РБНФ);
- в) построить синтаксические диаграммы для всех металингвистических переменных, а также совмещенную диаграмму для начального символа грамматики, если это возможно.

Задание 7. Задана формальная грамматика, порождающая все двоичные строки:

$$S \rightarrow S0 | S1 | 0 | 1$$

- а) определить тип грамматики;
- б) составить диаграмму состояний и матрицу переходов для конечного автомата, распознающего двоичные строки.

Задание 8. Задана КС-грамматика

$$E \rightarrow A + E \mid A$$

 $A \rightarrow z * A \mid z$

где $N=\{S,A\}$ — множество нетерминальных символов, $T=\{+,*,i\}$ — множество терминальных символов. Выполнить разбор цепочки терминальных символов

$$z*z+z$$

методом нисходящего грамматического разбора с возвратами.

Задание 9. Для арифметического выражения (a*b/(c-d))+((f-q)*(x+y))

- а) получить польскую запись любым известным методом;
- б) получить тетрадную форму по алгоритму вычисления выражений в польской записи.

Задание 10. Задана КС-грамматика

$$S \rightarrow A + S \mid A$$

 $A \rightarrow i * A \mid i$

где $N = \{E, A\}$ — множество нетерминальных символов, $T = \{+, *, z\}$ — множество терминальных символов. Выполнить разбор цепочки терминальных символов

методом нисходящего грамматического разбора с возвратами.

Задание 11. Заданы КС-грамматика и матрица предшествования:

Выполнить грамматический разбор цепочки ((i+i)*i)*i методом операторного предшествования.

Задание 12. Представить арифметическое выражение ((a+b)*c)*(b-d)/a в виде семантического дерева. Получить постфиксную форму выражения путем обхода полученного дерева в обратном порядке.

Задание 13. Представить арифметическое выражение x/((a+b)*c)*(b-d) в виде семантического дерева. Получить префиксную форму выражения путем обхода дерева в прямом порядке.

Задание 14. Представить в польской записи следующий фрагмент программы, написанной на языке высокого уровня

```
x:=(z/y)*15;
if x>(a+5)*3 then
begin
  x:=x+1;
  y:=(y+x)*z
end;
a:=a+x/y;
```

Задание 15. Представить в польской записи следующий фрагмент программы, написанной на языке высокого уровня:

```
x:=(z/y)-5;
for a:=1 to 10 do
begin
  x:=x*a;
  s:=(x+y)/25
end;
z:=s*s;
```

Задание 16. Представить в тетрадной форме следующий фрагмент программы, написанной на языке высокого уровня:

```
x:=(z/y)*15;
if x>(a+5)*3 then
begin
  x:=x+1;
  y:=(y+x)*z
end;
a:=a+x/y;
```

Задание 17. Представить в тетрадной форме следующий фрагмент программы, написанной на языке высокого уровня:

```
x:=z/(y-5);
for a:=1 to 10 do
  begin
    x:=x*a;
    s:=(x+y)/(x-y)
end;
b:=s+s*s;
```

Задание 18. Представить оператор присваивания

```
A[i,j] := A[j,i] * B[i,j]
```

в тетрадной форме и выполнить машинно-независимую оптимизацию, если массивы имеет следующие пределы изменения индексов: A[1..M, 1..N] и B[1..M, 1..N].

```
Задание 19. Представить оператор присваивания X[i,j] := X[j,i] * X[i,j+1]
```

в тетрадной форме и выполнить машинно-независимую оптимизацию, если массив имеет следующие пределы изменения индексов X [0..N, 0..N].

Задание 20. Задан следующий фрагмент программы:

```
for i:=1 to N do
  for j:=1 to N do
  S[j, i]:=S[i, j];
```

Представить его в тетрадной форме и выполнить машинно-независимую оптимизацию, если массив имеет следующие пределы изменения индексов S [0 . . N , 1 . . N] .

Задание 21. Задан следующий фрагмент программы:

```
for i:=a to b do
  X[i, j]:=X[j, i];
```

Представить его в тетрадной форме и выполнить машинно-независимую оптимизацию, если массив имеет следующие пределы изменения индексов X [0..M,0..M].

Задание 22. Задан следующий фрагмент программы:

```
for j:=x to y do
  z[i, j]:=z[j, i];
```

Представить его в тетрадной форме и выполнить машинно-независимую оптимизацию, если массив имеет следующие пределы изменения индексов z [1..N, 1..N].

Задание 23. Для арифметического выражения (a*b/(c-d))+((f-g)*(x+y)) определить порядок выполнения операций, при котором минимизируется количество промежуточных результатов. Для этого:

- а) построить дерево операторов;
- б) определить укладку дерева операторов минимальной ширины;
- в) составить список тетрад.

Задание 24. Для представленного оператора присваивания X := Y * (A+B) + C * D

- а) составить список тетрад;
- б) выполнить генерацию кода с использованием следующей системы команд, где A аккумулятор, m ячейка памяти, c (A) и c (m) их содержимое.

Команда	Обозначение	Комментарий
Прочитать (загрузить) из ячейки памяти	load m	A←c (m)
Записать (сохранить) в ячейку памяти	store m	m←c(A)
Сложить с содержимым ячейки памяти	add m	A←c(A)+c(m)
Вычесть содержимое ячейки памяти	sub m	A←c(A)-c(m)
Умножить с содержимым ячейки памяти	mult m	A←c(A)*c(m)
Разделить на содержимое ячейки памяти	div m	A←c(A)/c(m)

в) выполнить машинно-зависимую оптимизацию кода.

Задание 25. Для представленного оператора присваивания A := B * (C+D) + X

- а) составить семантическое дерево;
- б) выполнить генерацию кода с использованием следующей системы команд, где A аккумулятор, m ячейка памяти, c (A) и c (m) их содержимое.

Команда	Обозначение	Комментарий
Прочитать (загрузить) из ячейки памяти	load m	A←c(m)
Записать (сохранить) в ячейку памяти	store m	m←c(A)
Сложить с содержимым ячейки памяти	add m	$A \leftarrow c(A) + c(m)$
Вычесть содержимое ячейки памяти	sub m	$A \leftarrow c(A) - c(m)$
Умножить с содержимым ячейки памяти	mult m	A←c(A)*c(m)
Разделить на содержимое ячейки памяти	div m	A←c(A)/c(m)

в) выполнить машинно-зависимую оптимизацию кода.

Типовые теоретические вопросы

- 1. Структура инструментального программного обеспечения.
- 2. Языковые процессоры и трансляторы.
- 3. Определение формальной грамматики.
- 4. Классы формальных грамматик.
- 5. Понятие формального языка. Математическое определение языка.
- 6. Использование формальных грамматик для описания синтаксиса языков САПР.
- 7. Метаязыки и их применение для описания синтаксиса языков САПР. Форма Бэкуса Наура (БНФ), расширенная БНФ (РБНФ).
- 8. Синтаксические диаграммы.
- 9. Фазы трансляции программ.
- 10. Основные функции сканера.
- 11. Принципы работы сканера.
- 12. Процедура сканирования для распознавания десятичных чисел.

- 13. Процедура сканирования для распознавания идентификаторов, целых и десятичных чисел.
- 14. Нисходящий грамматический разбор с возвратами.
- 15. Грамматический разбор методом операторного предшествования.
- 16. Вычисление отношений предшествования для КС-грамматик.
- 17. Синтаксический анализ скобочных структур.
- 18. Основные функции и построение семантического анализатора программ.
- 19. Семантическое дерево как форма представления программ в языковых процессорах САПР.
- 20. Польская запись как форма представления программ в трансляторах.
- 21. Тетрадная форма представления программ в трансляторах.
- 22. Алгоритм перевода выражений в польскую запись.
- 23. Генерация тетрадной формы и вычисление выражений, представленных в польской записи.
- 24. Машинно-независимая оптимизация линейных участков программ.
- 25. Машинно-независимая оптимизация циклических участков программ.
- 26. Задача оптимизации загрузки регистровой памяти при компиляции программ.
- 27. Алгоритм построения минимальной по ширине укладки дерева и его применение при оптимизации программ.
- 28. Основные формы объектного кода.
- 29. Генерация объектного кода для тетрадной формы представления программ.
- 30. Генерация объектного кода по семантическому дереву.
- 31. Машинно-зависимая оптимизация объектного кода в трансляторах.
- 32. Хеш-адресация в информационных таблицах.
- 33. Методы вычисления хеш-функции.
- 34. Разрешение коллизий в хеш-таблицах методом рехеширования.
- 35. Разрешение коллизий в хеш-таблицах методом цепочек.
- 36. Реализация операций поиска и записи в хеш-таблицах по методу цепочек.
- 37. Варианты построения компиляторов.

Типовые вопросы к лабораторным и практическим занятиям

- 1. Чем определяется необходимость использования польской записи при автоматическом вычислении арифметических выражений?
- 2. Что показывает бинарное дерево, описывающее некоторое арифметическое выражение?
- 3. Как получить польскую запись по бинарному дереву арифметического выражения?
- 4. Как получить префиксную форму записи арифметического выражения по бинарному дереву?
- 5. Какие основные свойства имеет польская запись выражений?
- 6. Что такое стек?
- 7. Как работает алгоритм вычисления арифметических выражений, представленных в польской записи?
- 8. Сколько раз требуется просмотреть строку польской записи, чтобы вычислить значение соответствующего выражения?
- 9. Какое назначение имеет стек в алгоритме вычисления выражений в польской записи?
- 10. Какое максимальное число элементов может быть записано в стек при вычислении некоторого выражения, представленного в польской записи?
- 11. Как реализовать в программе стек для хранения символьных данных?
- 12. Как модифицировать программу вычисления выражений в польской записи, чтобы снять перечисленные ограничения?

- 13. Какое определение имеет формальная грамматика?
- 14. Какая грамматика называется контекстно-свободной?
- 15. Каким образом задается синтаксис арифметических выражений, используемых в языках программирования высокого уровня?
- 16. Как показать, что арифметическое выражение является корректным с точки зрения синтаксических правил языка?
- 17. На каких положениях и идеях основан алгоритм перевода выражений в польскую запись?
- 18. В чем заключается необходимость использования стека в алгоритме перевода выражений в польскую запись?
- 19. Сколько раз требуется просмотреть входную строку с исходным выражением, чтобы получить польскую запись этого выражения?
- 20. Какое максимальное число элементов может быть записано в стек в процессе получения польской записи выражения?
- 21. Каким образом приоритет операторов влияет на порядок записи элементов в стек?
- 22. Какова необходимость использования внутренней (промежуточной) формы представления арифметических выражений в процессе трансляции программ?
- 23. Как представить арифметическое выражение в виде последовательности тетрад?
- 24. Как с помощью семантического дерева задать порядок выполнения операций при вычислении выражения?
- 25. Почему в процессе трансляции программ требуется определять число регистров, необходимых для хранения промежуточных результатов при вычислении арифметических выражений?
- 26. С какой целью в процессе трансляции программ выполняется оптимизация внутренней формы представления арифметических выражений?
- 27. Каким образом порядок следования тетрад, описывающих вычисление арифметического выражения, влияет на число регистров, необходимых для хранения промежуточных, результатов?
- 28. Какое формальное определение имеет укладка дерева?
- 29. Что понимается под минимальной шириной укладки дерева?
- 30. Что показывает укладка дерева, описывающего порядок выполнения операций при вычислении арифметического выражения?
- 31. В чем заключается необходимость решения задачи построения оптимальной по ширине укладки дерева в процессе трансляции программ?
- 32. На каких положениях основан алгоритм построения оптимальной по ширине укладки ориентированного дерева?
- 33. Как описать структуру дерева в виде одномерного числового массива?
- 34. Какие основные формы объектного кода используются в компиляторах и каковы их достоинства и недостатки?
- 35. Как представить арифметический оператор присваивания в виде семантического дерева?
- 36. Что показывают уровни вершин дерева и как они вычисляются?
- 37. Какие действия определяет код, приписываемый вершинам семантического дерева, которые помечены символами операций сложения и умножения?
- 38. Как интерпретировать код, связываемый с корнем семантического дерева, описывающего арифметический оператор присваивания?
- 39. Какие шаги включает алгоритм генерации кода по семантическому дереву для простых операторов присваивания?
- 40. Как выбираются имена временных ячеек памяти при генерации кода по семантическому дереву?
- 41. Почему необходимо выполнять оптимизацию объектного кода в процессе компиляции программ?

- 42. На каких положениях основаны правила улучшения объектного кода в пределах линейных участков программ?
- 43. Какие параметры объектных программ улучшаются в результате машинно-зависимой оптимизации?
- 44. В чем состоит цель синтаксического анализа программ?
- 45. Каким образом представляются результаты синтаксического анализа при отсутствии и наличии ошибок в исходном тексте программы?
- 46. В чем состоит принципиальное отличие нисходящих и восходящих методов грамматического разбора?
- 47. Отличается ли дерево грамматического разбора, полученное восходящим методом, от дерева разбора нисходящим методом для одной и той же цепочки языка?
- 48. Почему восходящие методы грамматического разбора применяются только для языков, синтаксис которых описывается КС-грамматиками?
- 49. Каким требованиям должна удовлетворять КС-грамматика для реализации метода операторного предшествования?
- 50. Что понимают под сентенциальной формой грамматики?
- 51. Что такое основа сентенциальной формы грамматики?
- 52. В чем состоит их сходство и различие основы сентенциальной формы и первичной фразы?
- 53. Каким образом производится выделение основы (первичной фразы) сентенциальной формы в методе операторного предшествования?
- 54. Можно ли использовать восходящие методы грамматического разбора для языков, синтаксис которых описывается контекстно-зависимыми грамматиками?

Типовые задания для практической и самостоятельной работы

- 1. Разработка программ лексического анализа по заданному грамматическому описанию программных конструкций.
- 2. Разработка программ эмуляции простейшей системы команд абстрактной ЭВМ.
- 3. Программная реализация процедуры грамматического разбора методом рекурсивного спуска.
- 4. Варианты построения ассемблеров.
- 5. Организация и варианты построения загрузчиков.
- 6. Организация и варианты построения редакторов связей.
- 7. Макропроцессоры и варианты их построения.
- 8. Автоматизация построения лексических анализаторов.
- 9. Генератор сканеров LEX.
- 10. Автоматизация построения синтаксических анализаторов.
- 11. Компилятор компиляторов YACC.

Составил проф. кафедры САПР ВС, д.т.н., проф.

С.В. Скворцов

Оператор ЭДО ООО "Компания "Тензор" ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ ФГБОУ ВО "РГРТУ", РГРТУ, Корячко Вячеслав Петрович, ПОДПИСАНО **07.10.25** 14:09 Простая подпись ЗАВЕДУЮЩИМ Заведующий кафедрой САПР (MSK) КАФЕДРЫ ПОДПИСАНО **07.10.25** 14:10 ФГБОУ ВО "РГРТУ", РГРТУ, Корячко Вячеслав Петрович, Простая подпись ЗАВЕДУЮЩИМ Заведующий кафедрой САПР ВЫПУСКАЮЩЕЙ КАФЕДРЫ