МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Микро- и наноэлектроника»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ Б1.В.05 «ОСНОВЫ МАТЕРИАЛОВЕДЕНИЯ»

Направление подготовки 38.03.02 Менеджмент

Направленность (профиль) подготовки «Производственный менеджмент»

Квалификация выпускника – бакалавр

Форма обучения – очно-заочная

1. ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы — это совокупность учебно-методических материалов (практических заданий, описаний форм и процедур проверки), предназначенных для оценки качества освоения обучающимися данной дисциплины как части ОПОП.

Цель – оценить соответствие знаний, умений и владений, приобретенных обучающимся в процессе изучения дисциплины, целям и требованиям ОПОП в ходе проведения промежуточной аттестации.

Основная задача – обеспечить оценку уровня сформированности компетенций, закрепленных за дисциплиной.

Контроль знаний обучающихся проводится в форме промежуточной аттестации – зачет. Форма проведения – тестирование, теоретические вопросы.

2. ПАСПОРТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ ПО ДИСЦИПЛИНЕ

Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия
Тема 1. Введение. Свойства электротехнических и конструкционных материалов и их классификация	ПК-3.1	Зачет
Тема 2. Проводниковые электротехнические и конструкционные материалы.	ПК-3.1	Отчеты по лабораторным работам, зачет
Тема 3. Теория и технология термической обработки стали, химико-термическая обработка. Классификация и применение металлов и сплавов в электроэнергетике.	ПК-3.1	Отчеты по лабораторным работам, зачет
Тема 4. Диэлектрические электротехниче-ские и конструкционные материалы.	ПК-3.1	Отчеты по лабораторным работам, зачет
Тема 5. Магнитные материалы	ПК-3.1	Отчеты по лабораторным работам, зачет
Тема 6. Технологии обработки и формообразования электротехнических и конструкционных материалов	ПК-3.1	Зачет

3. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Описание критериев и шкалы оценивания промежуточной аттестации

а) описание критериев и шкалы оценивания тестирования:

Шкала оценивания	Критерий
5 баллов	уровень усвоения материала, предусмотренного программой: процент
(эталонный уровень)	верных ответов на тестовые вопросы от 85 до 100%
4 балла	уровень усвоения материала, предусмотренного программой: процент
(продвинутый уровень)	верных ответов на тестовые вопросы от 75 до 84%
3 балла	уровень усвоения материала, предусмотренного программой: процент
(пороговый уровень)	верных ответов на тестовые вопросы от 65 до 74%
0 баллов	уровень усвоения материала, предусмотренного программой: процент
	верных ответов на тестовые вопросы от 0 до 64%

б) описание критериев и шкалы оценивания теоретического вопроса:

Шкала оценивания	Критерий
5 баллов	выставляется студенту, который дал полный ответ на вопрос, показал
(эталонный уровень)	глубокие систематизированные знания, смог привести примеры, ответил

Шкала оценивания	Критерий	
	на дополнительные вопросы преподавателя	
3 балла	выставляется студенту, который дал полный ответ на вопрос, но на	
(продвинутый уровень)	некоторые дополнительные вопросы преподавателя ответил только с	
	помощью наводящих вопросов	
1 балла	выставляется студенту, который дал неполный ответ на вопрос в билете и	
(пороговый уровень)	смог ответить на дополнительные вопросы только с помощью	
	преподавателя	
0 баллов	выставляется студенту, который не смог ответить на вопрос	

На зачет выносится тест, 2 теоретических вопроса. Студент может набрать максимум 10 баллов. Итоговый суммарный балл студента, полученный при прохождении промежуточной аттестации, переводится в традиционную форму по системе «зачтено» / «не зачтено».

Шкала оценивания	Критерий	
Зачтено	5 – 10 баллов	Обязательным условием является выполнение всех
		предусмотренных в течение семестра заданий (на
		практических и лабораторных работах и при
		самостоятельной работе)
Не зачтено	0 - 4 баллов	Студент не выполнил всех предусмотренных в
		течение семестра текущих заданий (на практических
		и лабораторных работах и при самостоятельной
		работе)

4. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ

4.1. Промежуточная аттестация

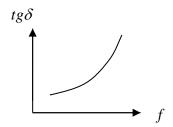
Коды	Результаты освоения ОПОП	
компетенций	Содержание компетенций	
ПК-3	Способен осуществлять тактическое управление процессами организации производства	
	и сетей поставок, оперативного планирования производственной деятельности на	
	уровне структурного подразделения промышленной организации (отдела, цеха)	
ПК-3.1	Разрабатывает предложения по повышению эффективности деятельности организации	
	(в том числе машиностроительной)	

а) типовые тестовые вопросы закрытого типа:

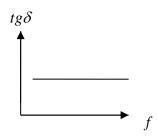
- 1. Какие частицы являются носителями заряда в твердых диэлектриках:
 - 1. ионы;
 - 2. электроны и дырки;
 - 3. нейтроны;
 - 4. позитроны.
- 2.Ток смещения обусловлен:
 - 1. мгновенными видами поляризации;
 - 2. ориентацией доменов;
 - 3. перескоком ионов с ловушки на ловушку;
 - 4. мгновенными и релаксационными видами поляризации, а также дрейфом свободных носителей заряда.
- 3. Несамостоятельная электропроводность газообразного диэлектрика осуществляется за счет носителей заряда, которые образуются в результате:
 - 1. диссоциации нейтральных молекул газа;
 - 2. ионизации, вызванной внешними энергетическими воздействиями;
 - 3. взаимного соударения нейтральных молекул газа;
 - 4. столкновений свободных электронов с молекулами газа.

- 4. Какие виды потерь относятся к диэлектрическим потерям при постоянном напряжении?
 - 1. Потери на электропроводность.
 - 2. Потери на гистерезис.
 - 3. Потери на вихревые токи.
 - 4. Потери на последействие
- 5. Дать определение понятию «диэлектрические потери».
 - 1. Электрическая мощность, затрачиваемая на нагрев диэлектрика, находящегося в электрическом поле.
 - 2. Механическая мощность, затрачиваемая на нагрев диэлектрика.
 - 3. Энергия электрического поля в которое помещен диэлектрик.
 - 4. Ток сквозной проводимости, обусловленный электропроводностью.
- 6. Какая схема замещения используется в качестве эквивалентной схемы реального диэлектрика с потерями?
 - 1. Параллельная.
 - 2. Последовательная.
 - 3. Параллельно последовательная.
 - 4. Все выше перечисленные.
- 7. Выберите формулу для расчета мощности диэлектрических потерь при последовательной схеме замещения диэлектрика.

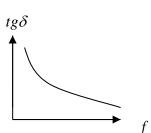
1.
$$P_a = 1/\omega CR$$
.

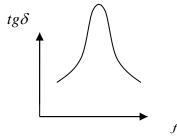

$$P_a = U^2 \omega C t g \delta.$$

3.
$$P_a = \omega CR$$


$$P_a = \frac{U^2 \omega C t g \delta}{1 + t g^2 \delta}$$

8. Выберите график частотной зависимости $\ tg\delta$ при наличии потерь на электропроводность .


1


2.

3.

4.

- 9. Чему равен тангенс угла диэлектрических потерь фторопласта?
 - 1. 0,0001
 - 2. 1
 - 3. 100
 - 4. -10
- 10. Назовите основные применения диэлектрических материалов.
 - 1. Усиление магнитного потока.
 - 2. Изоляция компонентов.
 - 3. Создание скользящих и разрывных контактов.
 - 4. Создание емкости конденсатора.

Типовые теоретические вопросы на зачет с оценкой

- 1. Классификация материалов по агрегатному состоянию, структуре, типу химической связи, электрическим свойствам (ПК-3-1).
- 2. Классификация, строение и свойства металлов и сплавов. Кривые плавления (кристаллизации). (ПК-3-1)
 - 3. Основные типы сплавов, диаграммы состояния. (ПК-3-1)
- 4. Термическая обработка стали: отжиг 1-го и 2-го рода, нормализация, закалка, отпуск. Цели, преследуемые разными видами обработки. (ПК-3-1)
- 5. Химико-термическая обработка стали: цементация, цианирование, нитроцементация, азотирование, борирование, металлизация. Цели, преследуемые разными видами обработки. (ПК-3-1)
 - 6. Классификация, маркировка, свойства и применение сталей. (ПК-3-1)
 - 7. Применение проводниковых материалов (металлов и сплавов) в электроэнергетике. (ПК-3-1)
- 8. 8. Физическая природа электропроводности твердых диэлектриков; зависимость электропроводности от температуры, напряженности и времени приложения электрического поля. (ПК-3-1)
- 9. Относительная диэлектрическая проницаемость. Механизмы поляризации диэлектриков. (ПК-3-1)
- 10. Частотные и температурные зависимости относительной диэлектрической проницаемости полярных и неполярных диэлектриков. (ПК-3-1)
 - 11. Физическая природа спонтанной поляризации и свойства сегнетоэлектриков. (ПК-3-1)
 - 12. Применение сегнетоэлектриков в электротехнике. (ПК-3-1)
- 13. Характеристики диэлектрических потерь в постоянном и переменном электрическом поле. (ПК-3-1)
- 14. Виды диэлектрических потерь. Зависимость тангенса угла диэлектрических потерь от температуры и частоты электрического поля для полярных и неполярных диэлектриков. (ПК-3-1)
 - 15. Полный диэлектрический спектр. (ПК-3-1)
 - 16. Электрическая прочность диэлектриков и ее характеристики. (ПК-3-1)
- 17. Особенности пробоя газообразных диэлектриков. Зависимость Епр от давления, формы электродов и расстояния между ними. (ПК-3-1)
- 18. Физическая природа и механизмы пробоя твердых диэлектриков. Влияние температуры, частоты электрического поля на Епр твердых диэлектриков. (ПК-3-1)
- 19. Электротепловой пробой твердых диэлектриков. Расчет критического напряжения электротеплового пробоя. (ПК-3-1)
- 20. Технология производства и применение термопластичных и термореактивных полимеров, эластомеров, стекол, керамики, слоистых пластиков в приборостроении. (ПК-3-1)

- 21. Классификация веществ по магнитным свойствам (диамагнетики, парамагнетики, ферромагнетики, ферримагнетики). Параметры, характеризующие магнитные свойства материалов. Основная кривая намагничивания и петля гистерезиса сильномагнитных материалов. (ПК-3-1)
- 22. Зависимость магнитной проницаемости сильномагнитных материалов от температуры, частоты и напряженности магнитного поля. (ПК-3-1)
- 23. Характеристики и виды потерь энергии магнитных материалов в переменном магнитном поле. Физические и технологические способы снижения потерь энергии. (ПК-3-1)
- 24. Магнитомягкие материалы для постоянных и низкочастотных магнитных полей. Магнитомягкие материалы для высоких и сверхвысоких частот. Особенности технологии производства ферритов и магнитодиэлектриков. (ПК-3-1)
- 25. Свойства и применение основных групп магнитотвердых материалов. Материалы для записи и хранения информации. (ПК-3-1)
 - 26. Точность обработки и шероховатость поверхности деталей. (ПК-3-1)
 - 27. Сварка и пайка. (ПК-3-1)
 - 28. Получение заготовок литьем, типовое технологическое оборудование. (ПК-3-1)
- 29. Обработка металлов и сплавов давлением и пластическим деформированием, типовое технологическое оборудование и инструменты. (ПК-3-1)
- 30. Обработка металлов и сплавов резанием, электрофизическими и электрохимическими способами, типовое технологическое оборудование и инструменты. (ПК-3-1)
- 31. Обработка поверхностей деталей абразивным инструментом, типовое технологическое оборудование и инструменты. (ПК-3-1)