МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

КАФЕДРА АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

«Цифровая обработка изображений»

Направление подготовки

09.04.02 Информационные системы и технологии

ОПОП академической магистратуры

«Информационно-аналитические системы»

Квалификация (степень) выпускника – магистр

Формы обучения – очная

Рязань

Оценочные материалы предназначены для контроля знаний обучающихся по дисциплине «Цифровая обработка изображений» и представляют собой фонд оценочных средств, образованный совокупностью учебно-методических материалов (контрольных заданий, описаний лабораторных работ), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений, навыков и уровня приобретенных компетенций обучающихся целям и требованиям основной образовательной программы в ходе проведения учебного процесса.

Основная задача — обеспечить оценку уровня сформированности профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего и промежуточного контроля, а также промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и проведения, в случае необходимости, индивидуальных консультаций. К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретённых обучающимися на лекциях. практических занятиях и лабораторных работах.

Промежуточный контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и проведения, в случае необходимости, индивидуальных консультаций. К промежуточному контролю успеваемости относятся проверка знаний, умений и навыков, приобретённых обучающимися на практических занятиях и лабораторных работах.

Промежуточная аттестация студентов по данной дисциплине проводится на основании результатов выполнения и защиты ими лабораторных работ. При выполнении лабораторных работ применяется система оценки «зачтено – не зачтено». Количество лабораторных работ по дисциплине определено утвержденным учебным графиком.

По итогам курса студенты сдают в конце семестра обучения экзамен. Форма проведения экзамена — устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса по темам курса.

1 Паспорт фонда оценочных средств по дисциплине

ПК-1. Способен выполнять работы по обработке и анализу научно-технической информации и результатов исследований.

ПК-1.2. Проводит анализ научных данных, результатов экспериментов и наблюдений.

Знает: инновационные подходы к использованию информационных технологий для решения возникающих задач.

Умеет: быстро и безопасно осуществлять решение поставленной задачи с помощью компьютера.

Владеет: методами и навыками работы с современными пакетами компьютерных прикладных программ, приемами подготовки отчетов о проведенных исследованиях.

№	Контролируемые	Код	Наименование оценочного
п/п	разделы дисциплины	контролируемой	средства
		компетенции	
1	Введение в цифровую обработку	ПК-1.2-3	Экзамен
	изображений		
2	Основные характеристики изображения.	ПК-1.2-3 ПК-1.2-У	Экзамен
3	Типы изображений. Системы цветовых	ПК-1.2-У	Контрольные вопросы.
	координат.		Экзамен.

4	Обработка изображений в системе MATLAB.	ПК-1.2-В	Контрольные вопросы. Экзамен.
5	Алгоритмы ЦОИ.	ПК-1.2-У	Контрольные вопросы. Отчет о выполнении лабораторной работы. Экзамен.
6	Амплитудные преобразования.	ПК-1.2-У	Контрольные вопросы. Экзамен.
7	Гистограммы. Частотные преобразования.	ПК-1.2-У	Контрольные вопросы. Экзамен.
8	Сжатие цифровых изображений.	ПК-1.2	Отчет о выполнении лабораторной работы. Экзамен.
9	Фильтрация изображений.	ПК-1.2-З ПК-1.2-В	Контрольные вопросы. Отчет о выполнении лабораторной работы. Экзамен.
10	Функции системы MatLab по пространственной фильтрации изображения.	ПК-1.2-В	Контрольные вопросы. Экзамен.
11	Формирование маски линейного фильтра по желаемой АЧХ.	ПК-1.2-3	Экзамен.
12	Корреляционный анализ	ПК-1.2-3	Экзамен.
13	Функции корреляционного анализа в системе MatLab	ПК-1.2-В ПК-1.2-У	Отчет о выполнении лабораторной работы. Экзамен.
14	Распознавание объектов на изображении.	ПК-1.2-В	Контрольные вопросы. Экзамен.

Критерии оценивания компетенций по результатам защиты лабораторных работ и сдачи экзамена

- 1. Уровень усвоения материала, предусмотренного программой.
- 2. Умение анализировать материал, устанавливать причинно-следственные связи.
- 3. Качество ответов на вопросы: логичность, убежденность, общая эрудиция.
- 4. Использование дополнительной литературы при подготовке ответов.
- 5. Умение вести поиск необходимой информации в сети Интернет.
- 6. Инициативность, умение работать в коллективе.
- 7. Качество оформления проектной документации.

Критерии приема лабораторных работ:

«зачтено» - студент представил полный отчет о лабораторной работе, ориентируется в представленных в работе результатах, осознано и правильно отвечает на контрольные вопросы;

«не зачтено» - студент не имеет отчета о лабораторной работе, в отчете отсутствуют некоторые пункты Задания на выполнение работы, при наличии полного отчета студент не ориентируется в представленных результатах и не отвечает на контрольные вопросы.

Критерии выставления оценок при аттестации результатов обучения по дисциплине в виде экзамена:

- на «отлично» оценивается глубокое раскрытие вопросов, поставленных в экзаменационном задании, пониманиие смысла поставленных вопросов, полные ответы на смежные вопросы, показывающие всестороннее, системное усвоение учебного материала;
- на «хорошо» оценивается полное раскрытие вопросов, поставленных в экзаменационном задании, понимание смысла поставленных вопросов, но недостаточно полные ответы на смежные вопросы;

- на «удовлетворительно» оценивается неполное раскрытие вопросов экзаменационного задания и затруднения при ответах на смежные вопросы;
- на «неудовлетворительно» оценивается слабое и неполное раскрытие вопросов экзаменационного задания, отсутствие осмысленного представления о существе вопросов, отсутствие ответов на дополнительные вопросы.

2 Примеры контрольных вопросов для оценивания компетенций ПК-1.2

- 1. Создать вектор-строку, если начальный элемент равен 0, конечный 14, шаг равен 1. Транспонировать строку в столбец.
- 2. Создать три вектора-строки из 5-ти элементов многочлена f = [xn, xn-1, xn-2, xn-3, xn-4] для n=5 и x=2; x=3; x=4. Объединить эти строки в матрицу $A(3\times5)$.
- 3. Создать три вектора-столбца из 5-ти элементов арифметической прогрессии 1 (1) n a = a + d n для a1=2 d=1; a1=7 d=2; a1=10 d=-2. Объединить эти столбцы в матрицу B(5×3).
- 4. Создать матрицы размерностью 3×3 : C единиц; D нулей; E равномерно распределенных случайных чисел; F нормально- распределенных случайных чисел
- 5. Транспонировать матрицу B и объединить с матрицей A в матрицу $M(6 \times 5)$
- 6. Из матрицы A убрать вторую строку.
- 7. У матрицы B обнулить третью строку и убрать две последние строки.
- 8. Создать с помощью функции repmat матрицу, состоящую из 2×3 матриц B.
- 9. Создать символьные константы : 1 миру мир; 2 введите матрицу, Ввести комментарий: использование интерактивного ввода.
- 10. Создать структуру, содержащую матрицы размерностью 3×3 и ввести с клавиатуры три матрицы Записать созданные матрицы в файлы на диск.
- 11. Определить максимальное и минимальное значения матрицы F из пункта 4 двумя способами: с помощью специальной функции reshape и через цикл While.
- 12. Вырезать из палитрового изображения, взятого из файла Chip.bmp, фрагмент шириной 95 и высотой 60, начиная с координат x=111, y=34, показать исходное изображение и фрагмент. Увеличить полученный фрагмент в 1.5 раза и повернуть против часовой стрелки на 60° . Показать результат.
- 13. Увеличенный фрагмент сделать ярче, и вывести результат и исходное изображение в одно окно для сравнения.
- 14. Преобразовать исходное изображение в полутоновое. Построить гистограмму. Выполнить его линейное контрастирование, определив исходный диапазон по гистограмме. Вывести контрастированное и исходное полутоновое изображение в одно окно.
- 15. Получить негатив исходного полутонового изображения.
- 16. Выполнить контрастирование исходного полутонового изображения с гамма- коррекцией получить более светлое и более темное изображения. Вывести результат и исходное изображение в одно окно для сравнения.
- 17. Построить гистограммы для этих трех изображений и вывести результат в одно окно.
- 18. Выполнить эквализацию палитрового изображения из файла Technlgy.bmp. Построить гистограммы исходного палитрового изображения и эквализированного изображения. Результат вывести в одно окно (в верхнем ряду изображения, под ними их гистограммы).
- 19. Прочитать палитровое изображение Technlgy.bmp, Получить два изображения, уменьшая количество цветов до n=7 и с tol=0.7. Результаи вывести на экран в разные окна. Преобразовать полученные изображения в полутоновые и создать по ним изображения из четырех уровней яркости. Вывести на экран.
- 20. Прочитать палитровое изображение из файла Earth.bmp, вывести на экран, преобразовать в полутоновое, добавить импульсный шум, отфильтровать зашумленное изображение медианной фильтрацией и обобщенным нелинейным фильтром. Зашумленное и отфильтрованные изображения вывести в одном окне для сравнения. Задание оформить в

виде функции. В качестве входного аргумента передавать название файла с палитровым изображением.

- 21. Выполнить фильтрацию:
- а) Отфильтровать изображение с помощью масок кругового градиента. Ввод масок двумерных линейных фильтров, построение их АЧХ, фильтрацию изображения с их помощью и вывод результата выполнить в цикле.
- б) Отфильтровать изображение с помощью масок лапласиановских фильтров
- 22. Прочитать палитровое изображение из файла Technlgy.bmp, вывести на экран, преобразовать в полутоновое. Получить маску оператора Превитт. Выполнить фильтрацию исходного полутонового фрагмента маской оператора Превитт отдельно по горизонтали и по вертикали и вместе на одном изображении;
- 23. Прочитать палитровое изображение из файла 'Construc.bmp', вывести на экран, преобразовать в полутоновое. Взять в качестве АЧХ фильтра функцию расстояния от начала координат, сформировать по АЧХ маску фильтра и отфильтровать полутоновое изображение.
- 24. Выполнить эквализацию полутонового изображения, полученного из палитрового изображения, хранящегося в файле earth.bmp. Найти двумерную взаимную корреляционную функцию между исходным и полученными изображениями. Получить график.
- 25. Вывести АЧХ всех фильтров, создаваемых функцией по заданию масок предопределенного фильтра, в одном окне с заголовками для каждого фильтра.

3. Формы контроля

3.1. Формы текущего контроля

Текущий контроль по дисциплине проводится в виде тестирования по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно при подготовке к лабораторным работам и на практических занятиях.

3.2 Формы промежуточного контроля

Форма промежуточного контроля по дисциплине – защита лабораторных работ.

3.3. Формы заключительного контроля

Форма заключительного контроля по дисциплине – экзамен.

4. Критерий допуска к экзамену

К экзамену допускаются студенты, защитившие ко дню проведения экзамена по расписанию экзаменационной сессии все лабораторные работы и выполнившие все задания практических занятий.

Студенты, не защитившие ко дню проведения экзамена по расписанию экзаменационной сессии хотя бы одну лабораторную работу, на экзамене получают неудовлетворительную оценку. Решение о повторном экзамене и сроках проведения экзамена принимает деканат после ликвидации студентом имеющейся задолженности по лабораторным работам.

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ПОДПИСАНО **ФГБОУ ВО "РГРТУ", РГРТУ,** Холопов Сергей Иванович, Заведующий Простая подпись кафедрой АСУ