МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Автоматизация информационных и технологических процессов»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

Б1.В.ДВ.01.02 «ОБОРУДОВАНИЕ И ТЕХНОЛОГИИ СОВРЕМЕННЫХ ПРОИЗВОДСТВ»

Направление подготовки Организация и управление наукоемкими производствами

Направленность (профиль) подготовки «Организация и управление производственными системами»

Квалификация выпускника – магистр

Форма обучения – очная

1. ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы – это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур проверки), предназначенных для оценки качества освоения обучающимися данной дисциплины как части ОПОП.

Цель – оценить соответствие знаний, умений и владений, приобретенных обучающимся в процессе изучения дисциплины, целям и требованиям ОПОП в ходе проведения промежуточной аттестации.

Контроль знаний обучающихся проводится в форме промежуточной аттестации.

Промежуточная аттестация по дисциплине осуществляется путем проведения зачета. Форма проведения зачета — тестирование и выполнение практических заданий. При необходимости, проводится теоретическая беседа с обучаемым для уточнения оценки. Выполнение заданий на практических занятиях в течение семестра и заданий на самостоятельную работу является обязательным условием для допуска к зачету.

2. ПАСПОРТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

№ п/п	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контролируемой компетенции (или её части)	Наименование оценочного средства
1	Оборудование заготовительного	ПК-2.2	Практические занятия.
	производства		Зачет
2	Современное оборудование	ПК-2.2	Практические занятия.
	механообрабатывающих производств		Зачет
3	Технологии обработки тел вращения	ПК-2.2	Практические занятия.
			Зачет
4	Технология обработки корпусных деталей	ПК-2.2	Практические занятия.
	- 2 2		Зачет

3. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Сформированность каждой компетенции в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

Описание критериев и шкалы оценивания промежуточной аттестации

а) описание критериев и шкалы оценивания тестирования:

Шкала оценивания	Критерий			
5 баллов	уровень усвоения материала, предусмотренного программой:			
(эталонный уровень)	процент верных ответов на тестовые вопросы от 85 до 100%			
4 балла	уровень усвоения материала, предусмотренного программой:			
(продвинутый уровень)	процент верных ответов на тестовые вопросы от 75 до 84%			
3 балла	уровень усвоения материала, предусмотренного программой:			
(пороговый уровень)	процент верных ответов на тестовые вопросы от 61 до 74%			
0 баллов	уровень усвоения материала, предусмотренного программой:			
	процент верных ответов на тестовые вопросы от 0 до 60%			

б) описание критериев и шкалы оценивания решения расчетной задачи:

Шкала оценивания	Критерий
5 баллов	Задача решена верно
(эталонный уровень)	
4 балла	Задача решена верно, но имеются технические неточности в
(продвинутый уровень)	расчетах
3 балла	Задача решена верно, с дополнительными наводящими вопросами
(пороговый уровень)	преподавателя
0 баллов	Задача не решена

г) описание критериев и шкалы оценивания теоретического вопроса:

Шкала оценивания	Критерий
5 баллов	выставляется студенту, который дал полный ответ на вопрос, показал
(эталонный уровень)	глубокие систематизированные знания, смог привести примеры,
	ответил на дополнительные вопросы преподавателя
3 балла	выставляется студенту, который дал полный ответ на вопрос, но на
(продвинутый уровень)	некоторые дополнительные вопросы преподавателя ответил только с
	помощью наводящих вопросов
1 балла	выставляется студенту, который дал неполный ответ на вопрос в
(пороговый уровень)	билете и смог ответить на дополнительные вопросы только с
	помощью преподавателя
0 баллов	выставляется студенту, который не смог ответить на вопрос

На зачет выносятся тест, 1 задача комплексного характера и 1 теоретический вопрос, для решения которой необходимо знать теоретический и практический материал в полном объеме курса. Студент может набрать максимум 10 баллов. Итоговый суммарный балл студента, полученный при прохождении промежуточной аттестации, переводится в традиционную форму по системе в традиционную форму по системе «зачтено» и «не зачтено».

Оценка «зачтено» выставляется студенту, при условии выполнения всех заданий на уровне не ниже 8 баллов. Обязательным условием является выполнение всех предусмотренных в течение семестра практических и самостоятельных работ.

Оценка «не зачтено» выставляется студенту, который не набрал по шкале оценивания порогового уровня баллов не ниже 8 баллов и не выполнил всех предусмотренных в течении семестра практических и самостоятельных работ.

4. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ

4.1. Промежуточная аттестация (зачет)

Код и наименование	Код и наименование индикатора		
компетенции	достижения компетенции		
ПК-2	ПК-2.2		
Способен разрабатывать	Разрабатывает, анализирует и оценивает проекты и		
продуктовую стратегию и	программы реализации продуктовой и технологической		
стратегию технологической	стратегий		
модернизации производственных			
систем, анализировать и			
оценивать инвестиционные			
проекты			

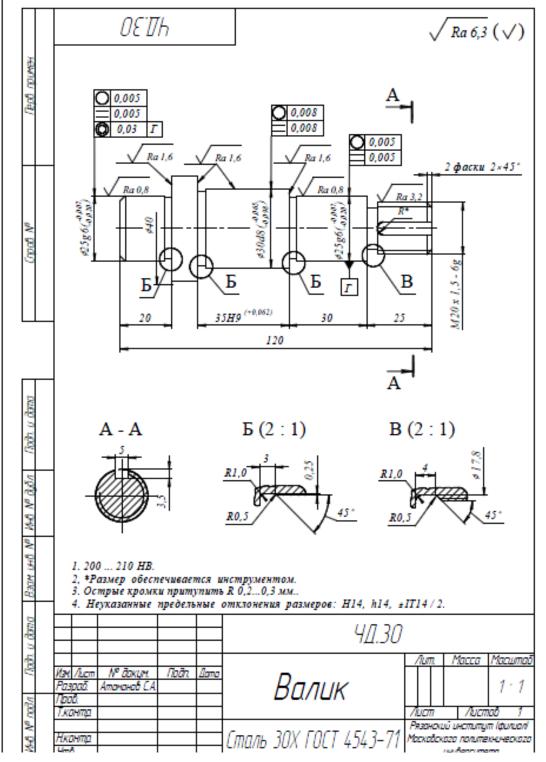
а) типовые тестовые вопросы:

- 1. Что такое обрабатывающий центр
- 1. Станок, оснащенный роботом манипулятором, системой автоматической смены инструмента.
 - 2. Станок с ЧПУ токарного или фрезерного типа, управляемый с центрального компьютера
 - 3. Станок сочетающий лазерный и механический принцип обработки
 - 4. Станок с ЧПУ реализующий принцип интеграции обработки различными способами
- 2. Для каких видов работ предназначены гибочные станки с ЧПУ
 - 1. Для гибки труб, зубчатых колес, полимерных материалов
 - 2. Для гибки листового металла
 - 3. Для гибки труб и полимерных материалов
 - 4. Для гибки листового металла.
- 3. Наиболее высокая производительность обработки фланца будет достигнута при использовании
 - 1. Токарного станка с ЧПУ
- 2. Двухшпиндельного станка с ЧПУ со встречно расположенными шпинделями и подвижной второй шпиндельной бабкой
 - 3. Универсального токарного станка с подвижной задней бабкой и противошпинделем
 - 4. Токарного станка с ЧПУ, оснащенного задней бабкой
- 4. Наиболее прогрессивная технология обработки малоразмерных валов достигается на
 - 1. Токарных станках с ЧПУ
 - 2. Обрабатывающих центрах
 - 3. Автоматах продольного точения
 - 4. Шлифовальных станках с ЧПУ
 - 5. Оборудовании заготовительного производства
- 5. Для современной технологии изготовления сложных корпусных деталей применяют
 - 1. Токарные и фрезерные обрабатывающие центра
 - 2. Фрезерные станки с ЧПУ
 - 3. Обрабатывающие центра фрезерного типа
 - 4. Токарные станки с возможностью фрезерования
 - 5. Автоматы продольного точения
- 6. Для обработки пространственных конструкций в первую очередь необходимо выбрать
 - 1. Оборудование и инструмент
 - 2. Оборудование, инструмент, заготовку
 - 3. Технологическую оснастку, инструмент, оборудование
 - 4. Заготовку, оснастку, инструмент
 - 5. Инструмент, оснастку, заготовку
- 7. Система ЧПУ предназначена
 - 1. Для управления приводами
 - 2. Для управления оборудованием
 - 3. Для управления роботами
 - 4. Для выдачи управляющих воздействий исполнительным механизмам
- 8. Какими положительными сторонами обладает гибкий технологический процесс
 - 1. Делает его более производительным
 - 2. Делает его более надежным
 - 3. Позволяет снизить себестоимость выпускаемой продукции
 - 4. Позволяет без больших затрат в короткие сроки освоить выпуск новой продукции
- 5. Допускает произвести в любой момент перестановку оборудования в производственном помещении

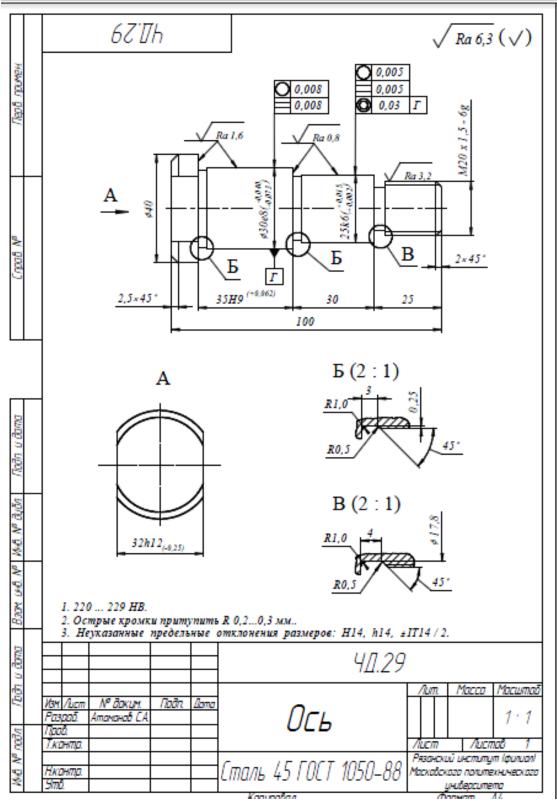
- 9. В современной технологии применяют
 - 1. Стандартный инструмент
 - 2. Универсальный инструмент
 - 3. Фасонный инструмент
 - 4. Комбинированный инструмент
 - 5. Промышленный инструмент

31. Токарный станок с ЧПУ (ПК-2.2)

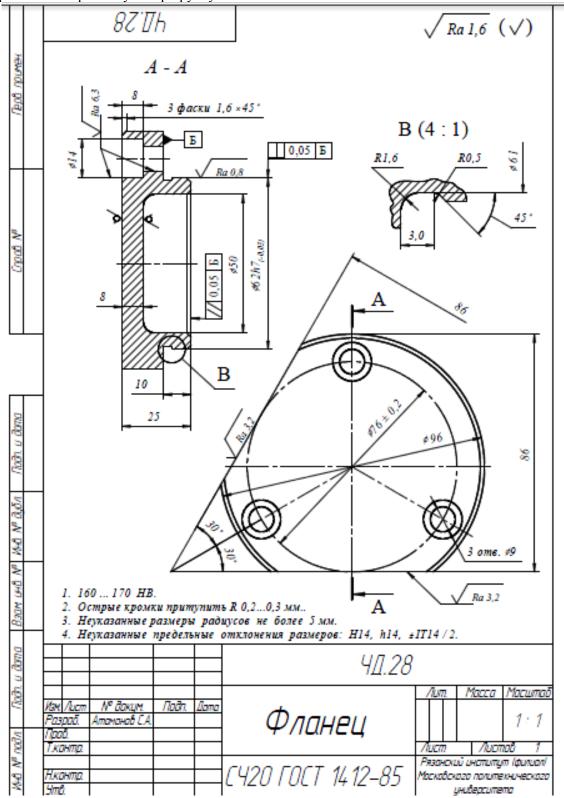
34. Лоботокарные станки (ПК-2.2)

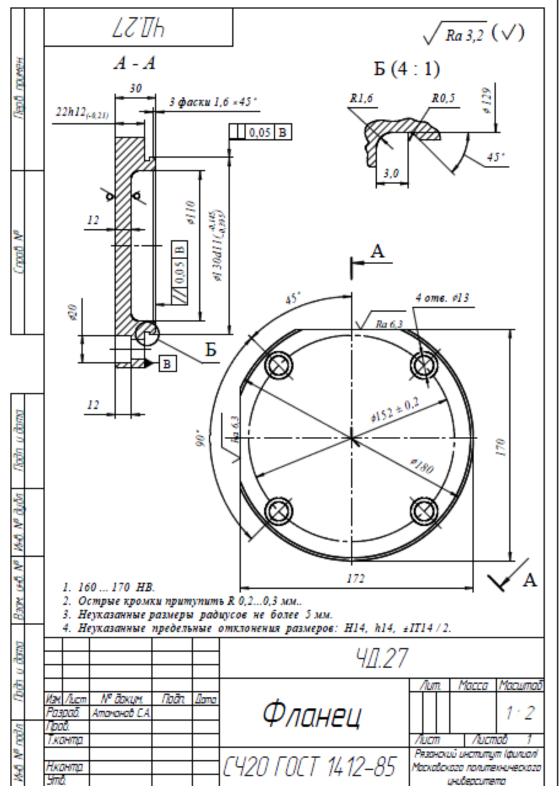

32. Автоматы продольного точения (ПК-2.2) 33. Токарно-карусельные станки (ПК-2.2)

б) типовые тестовые вопросы открытого типа:					
1. ГАП состоят из	(обычных	станков	c	чпу	И
обрабатывающих центров)	(**		•		
2. Автоматические линии используют	произ	водстве	(мас	совом	И
крупносерийном)			(
3. Операция позволяет получить н	наименьшую шег	оховатост	ъ пон	верхно	сти
(шлифование)				P	
4. Станки токарной группы служат для обработки		(тел вра	шени	я)	
5. Станки фрезерной группы служат для обработь	ки))	пове	<i>)</i> рхност	гей.
располагающихся под различными углами друг к другу)			,		,
6. Лазерное оборудование предназначено для		(резан	ия к	орпусь	ных
конструкций)		(pesus		opii) c i	I DIZI
Non-Try Admin)					
в) типовые теоретические вопросы					
1. Паровоздушные молоты (ПК-2.2)					
2. Кривошипные горячештамповочные пресса (ПК-2.2))				
3. Горизонтально-ковочная машина (ГКМ) (ПК-2.2)					
4. Гидравлические пресса (ПК-2.2)					
5. Ковочный манипулятор (ПК-2.2)					
6. Станки для лазерной обработки (ПК-2.2)					
7. Гибочные пресса с ЧПУ (ПК-2.2)					
8. Координатно-пробивные пресса с ЧПУ (ПК-2.2)					
9. Оборудование гидроабразивной резки (ПК-2.2)					
10. Оборудование плазменной резки (ПК-2.2)					
11. Ленточнопильные станки (ПК-2.2)					
12. Сварочное оборудование (ПК-2.2)					
13. Оборудование контактной сварки (ПК-2.2)					
14. Оборудование контактной сварки (ПК-2.2)					
15. Оборудование для сварки трением (тк-2.2)	ом (ПК 2-2)				
16. Металлорежущее оборудование (ПК-2.2)	OM (11IX-2.2)				
* *					
17. Общие сведения о металлорежущих станках (ПК-2.2 18. Технико-экономические показатели металлорежущи)\			
		2)			
19. Производительность станков и станочных систем (П	K-2.2)				
20. Точность металлорежущих станков (ПК-2.2)					
21. Гибкость металлорежущих станков (ПК-2.2)					
22. Надежность станков (ПК-2.2)					
23. Уровень безопасности станочного оборудования (П	·				
24. Удобство управления и обслуживания станочного об	борудования (ПК-	2.2)			
25. Основные узлы и механизмы станков (ПК-2.2)					
26. Станины и направляющие металлорежущих станков	$(\Pi K-2.2)$				
27. Шпиндельные узлы (ПК-2.2)					
28. Приводы главного движения и подач (ПК-2.2)					
29. Токарное оборудование (ПК-2.2)					
30. Токарно-винторезный станок (ПК-2.2)					


- 35. Станки сверлильно-расточной группы
- 36. Координатно-расточные станки (ПК-2.2)
- 37. Горизонтально-расточные станки (ПК-2.2)
- 38. Вертикально-фрезерные консольные и широкоуниверсальные станки (ПК-2.2)
- 39. Продольно-фрезерные станки (ПК-2.2)
- 40. Фрезерно-центровальные станки (ПК-2.2)
- 41. Вертикально-фрезерный станок с ЧПУ (ПК-2.2)
- 42. Зубодолбежные станки (ПК-2.2)
- 43. Зубофрезерные станки для обработки цилиндрических и червячных зубчатых колес и шлицевых валов (ПК-2.2)
- 44. Зуборезные станки для обработки конических зубчатых колес (ПК-2.2)
- 45. Протяжные станки (ПК-2.2)
- 46. Круглошлифовальные станки для обработки наружных и внутренних поверхностей (ПК-2.2)
- 47. Плоскошлифовальные станки (ПК-2.2)
- 48. Бесцентрово-шлифовальные станки (ПК-2.2)
- 49. Продольно-шлифовальные станки (ПК-2.2)
- 50. Координатно-шлифовальные станки (ПК-2.2)
- 51. Заточные станки (ПК-2.2)
- 52. Обрабатывающие центра (многооперационные станки) (ПК-2.2)
- 53. Станки с электрохимическими и электрофизическими методами обработки (ПК-2.2)
- 54. Оборудование аддитивных технологий (ПК-2.2)
- 55. Измерительные приборы и оборудование (ПК-2.2)
- 56. Системы числового программного управления (ПК-2.2)
- 57. Основные параметры, влияющие на выбор способа получения заготовки (тип производства, материалы, возможности оборудования, размеры, масса детали, качество поверхности) (ПК-2.2)
- 58. Заготовительные операции для валов. (ПК-2.2)
- 59. Обработка валов. (ПК-2.2)
- 60. Обработка зубчатых колес. (ПК-2.2)
- 61. Построение токарной обработки валов на станках с ЧПУ. (ПК-2.2)
- 62. Обработка шлицев на валах. (ПК-2.2)
- 63. Последовательность обработки поверхностей корпусных деталей. (ПК-2.2)
- 64. Построение обработки фланцев на станках с ЧПУ. (ПК-2.2)
- 65. Обработка отверстий малых диаметров в корпусах. (ПК-2.2)
- 66. Обработка фланцев со шлицевыми отверстиями. (ПК-2.2)
- 67. Обработка плоских поверхностей в корпусных деталях. (ПК-2.2)
- 68. Особенности прутковой обработки. (ПК-2.2)
- 69. Обработка гильз. (ПК-2.2)
- 70. Обработка рам. (ПК-2.2)
- 71. Обработка рычагов. (ПК-2.2)
- 72. Контроль, испытания собранных узлов и машин. (ПК-2.2)

г) типовые практические задания:


- 1. Выбрать оборудование с ЧПУ для получения заготовки.
- 2. Выбрать современное оборудование для механической обработки детали, описать его компоновку и принцип работы.
- 3. Разработать современную маршрутную технологию изготовления.

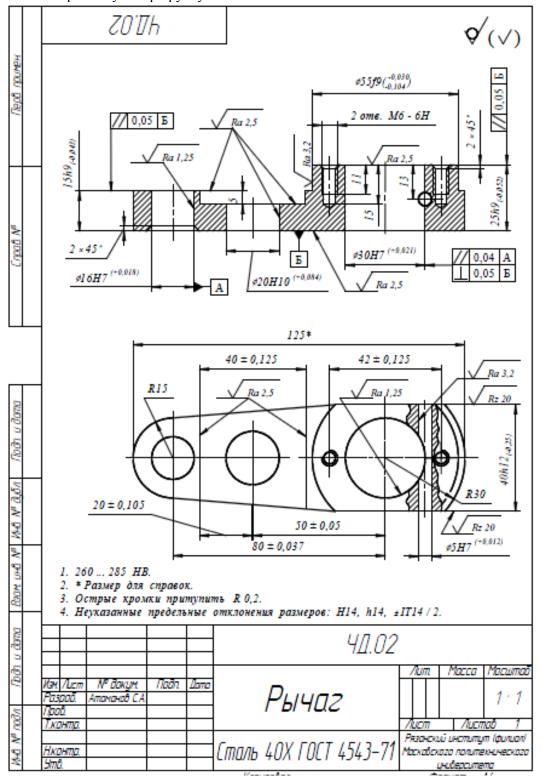

- 1. Выбрать оборудование с ЧПУ для получения заготовки.
- 2. Выбрать современное оборудование для механической обработки детали, описать его компоновку и принцип работы.
- 3. Разработать современную маршрутную технологию изготовления.

- 1. Выбрать оборудование с ЧПУ для получения заготовки.
- 2. Выбрать современное оборудование для механической обработки детали, описать его компоновку и принцип работы.

- 1. Выбрать оборудование с ЧПУ для получения заготовки.
- 2. Выбрать современное оборудование для механической обработки детали, описать его компоновку и принцип работы.
- 3. Разработать современную маршрутную технологию изготовления.

- 1. Выбрать оборудование с ЧПУ для получения заготовки.
- 2. Выбрать современное оборудование для механической обработки детали, описать его компоновку

и принцип работы. 3. Разработать современную маршрутную технологию изготовления. 97.<u>1</u>Th Ra 6,3 (√) 0,0025 увод поливн 0,0025 -8 x 46 x 54f7 x 9f8 0,0025 Ra 0,4 В В Ra 0,4 R1,5 R1,5 Ra 0,8 G F \$45k6(+0,018) 30 (6000noag Д M36×1,5 \$45k6(+0,002) Б 2 фаска 2,5 ×45 30 40 25 30 240 B(2:1) Б - Б A - A 451 Ra 1,6 = 0,012 H Лоди и дама BRON UND Nº MAD Nº CLUDA 0,01 3 3 И R0,5 1. 260 ... 285 HB. 2. Поверхности Ж закалить - ТВЧ h 0,8...1,2; 40...45 HRСэ. 3. *Размер обеспечивается инструментом. 4. Неуказанные предельные отклонения размеров: H14, h14, ±IT14/2. ЧД.26 Масштай Вал Разраб MAR Nº DOGA Т.канта.


Сталь 40Х ГОСТ 4543-71

Маскавского политехнического

- 1. Выбрать оборудование с ЧПУ для получения заготовки.
- 2. Выбрать современное оборудование для механической обработки детали, описать его компоновку и принцип работы.

3. Разработать современную маршрутную технологию изготовления. 57.<u>17</u>h Ra 12,5 (√) TBY h 0,8...1,2; 40...45 HRC9 лаод логмен Полировать Ra 0,4 фаски noon N жаж \$30k6(_0,015) В Б 30 - 25 60 20h11_(-0,13) 128 168 210 A - A Б - Б 60.043 Ra 1,6 = 0,012 E 0.01 E BOOM UND NO 1. 260 ... 285 HB. *Размер обеспечивается инструментом.
Неуказанные предельные отклонения размеров: H14, h14, ±IT14/2. ЧД.25 Ποδη Вал Тжонта Сталь 40Х ГОСТ 4543-71

- 1. Выбрать оборудование с ЧПУ для получения заготовки.
- 2. Выбрать современное оборудование для механической обработки детали, описать его компоновку и принцип работы.
- 3. Разработать современную маршрутную технологию изготовления.

1. Выбрать оборудование с ЧПУ для получения заготовки.

№ даким

Атаманов СА

Разрад

Тжанта

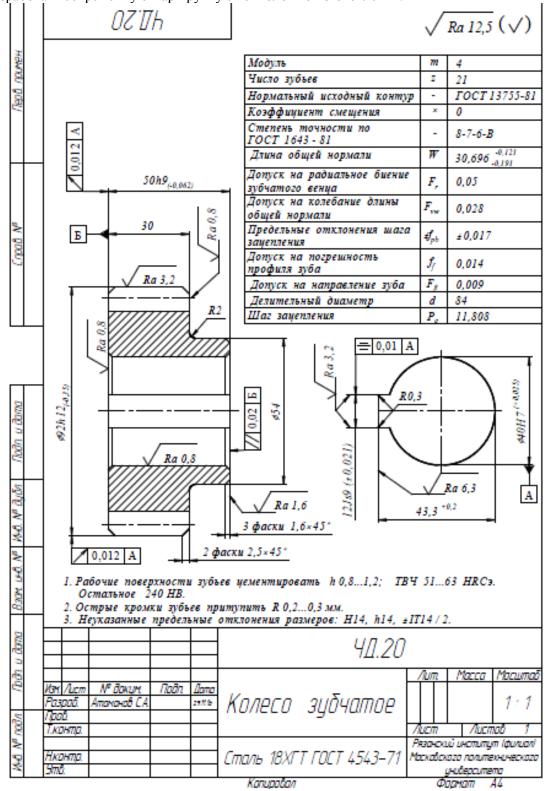
/Iboti

Med Nº noda

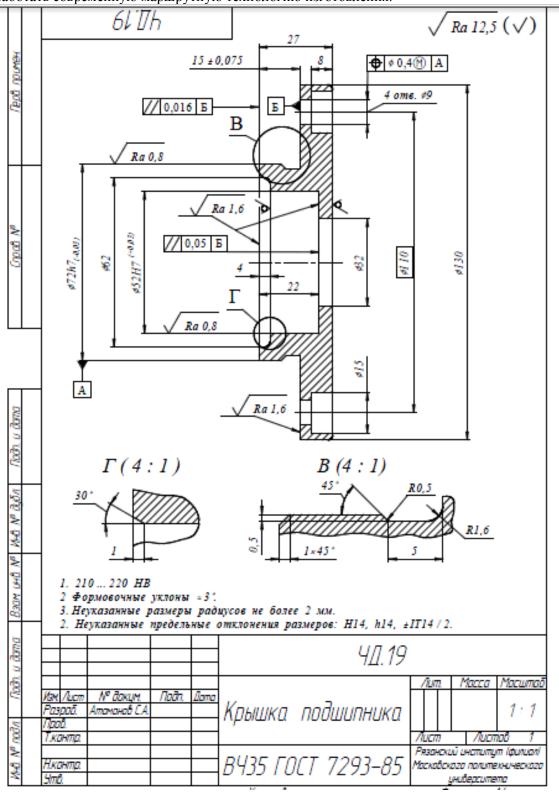
2. Выбрать современное оборудование для механической обработки детали, описать его компоновку

и принцип работы. 3. Разработать современную маршрутную технологию изготовления. lZ'Th Ra 12.5 (V) Модуль т 4 Число зубьев Z 21 Нормальный исходный контур ΓOCT 13755-81 x Коэффициент смещения 0 Степень точности по 8-7-6-B _ FOCT 1643 - 81 30,696 -0,121 Длина общей нормали ₩ Допуск на радиальное биение F, 0.05 зубчатого венца Допуск на колебание длины F_{vw} 0,028 общей нормали 25h9_(-0,052) Предельные отклонения шага f_{pb} ±0.017 goo. зацепления Допуск на погрешность f_i Б 0,014 профиля зуба Ra 3,2 $\overline{F_i}$ 0,009 Допуск на направление зуба đ 84 Делительный диаметр Шаг зацепления P_{a} 11.808 0,01 A 2 фаски 1,6×45* \$40H7 (+0.025) \$92h 12,025 R0,3 Лоди и адама 2359 (±0.021) Ra 0,8 Ra 1,6 BOOM UND Nº MAD Nº OLIGE Ra 6,3 A 43,3 +0,2 2 фаски 2,5×45° 0,012 Α Рабочие поверхности зубъев цементировать п 0,8...1,2; ТВЧ 51...63 НВСэ. Остальное 240 НВ. Острые кромки зубьев притупить R 0,2...0,3 мм. 3. Неуказанные предельные отклонения размеров: H14, h14, ±1T14/2.

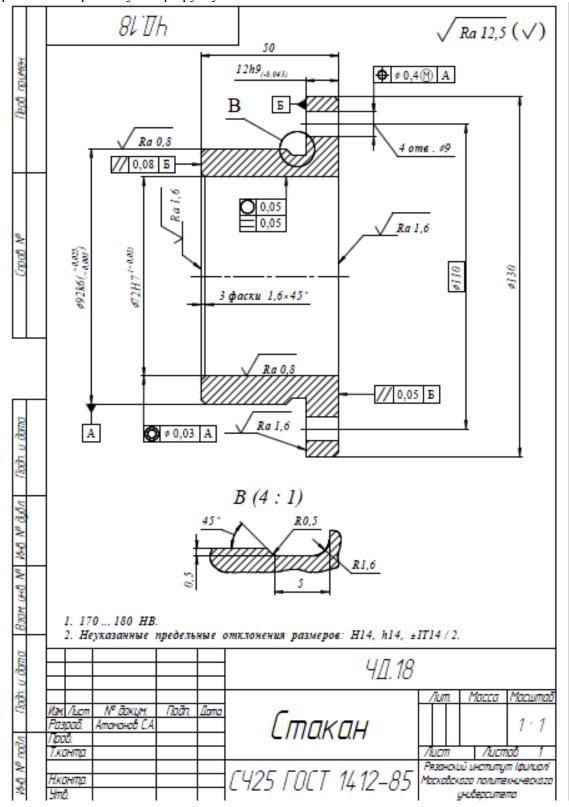
ЧД.21


Колесо зубчатое

Сталь 18ХГТ ГОСТ 4543-71


Масштай

Маскайскага политехническага


- 1. Выбрать оборудование с ЧПУ для получения заготовки.
- 2. Выбрать современное оборудование для механической обработки детали, описать его компоновку и принцип работы.

- 1. Выбрать оборудование с ЧПУ для получения заготовки.
- 2. Выбрать современное оборудование для механической обработки детали, описать его компоновку и принцип работы.

- 1. Выбрать оборудование с ЧПУ для получения заготовки.
- 2. Выбрать современное оборудование для механической обработки детали, описать его компоновку и принцип работы.
- 3. Разработать современную маршрутную технологию изготовления.

Ч.канта.

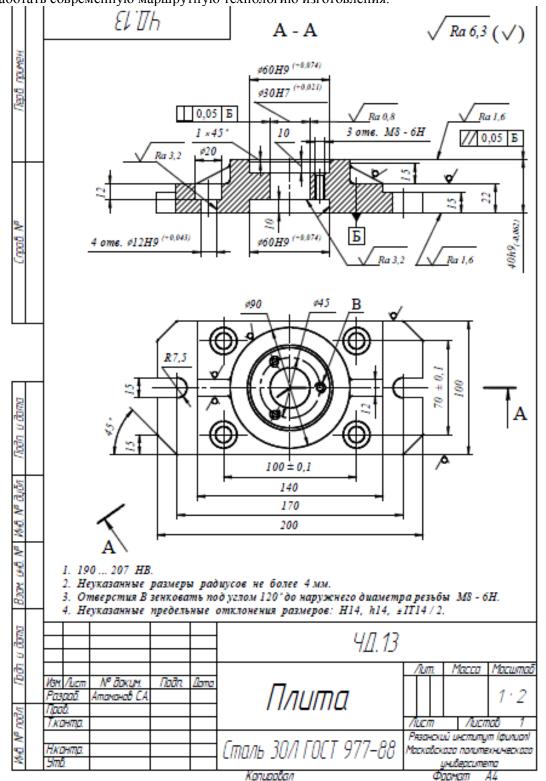
- 1. Выбрать оборудование с ЧПУ для получения заготовки.
- 2. Выбрать современное оборудование для механической обработки детали, описать его компоновку

и принцип работы. 3. Разработать современную маршрутную технологию изготовления. 91.IJh Ra 6,3 (√) 45 ± 0.1 A - A (D) 0,05 B Ra 2,5 Ra 0,8 of 4H9 (+0,074) 8,0 Б (+0.021)0,08 Г 4 ome. M6 - 7H ¢65H10 140 75 ± 0.1 Б 8 ome. \$10,5 001 75 ± 0.1 ø65 105 ± 0,1 Ra 2,5 140 1. 170 ... 200 HB. 2. * Размер для справок. 3. Неуказанные размеры радиусов не более 4 мм. 4. Резьбовые отверстия зенковать под углом 120°до наружнего диаметра резьбы Мб. 5. Неуказанные предельные отклонения размеров: H14, h14, ±IT14/2. ЧД.16 Изм Лист № доким. Подп Корпус Разрай hnti

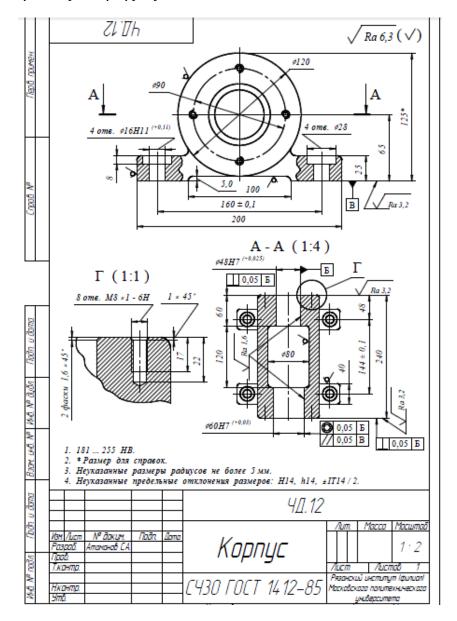
Копировал

Нконта

- 1. Выбрать оборудование с ЧПУ для получения заготовки.
- 2. Выбрать современное оборудование для механической обработки детали, описать его компоновку


и принцип работы. 3. Разработать современную маршрутную технологию изготовления. lO'∏h **∀**(√) \$25**H**7 (+0,021) 0,04 5H10 (+0,048) Rz 40 1,6 ×45 1.6 × 45 Rz 20 25/19/0.052) 4549,0,002) Ra 2,5 man 0.03 M6 - 6H Ra2.5 \$14H7 (+0,018) ø50 1,5×45* 27,8 +0,1 Rz 40 Rz 40 ø30 R20 6H9 (+0,03) 60 ± 0,04 100* BROW UND. Nº 1. 170 ... 240 HB. 2. * Размер для справок. 3. Острые кромки притупить R 0,2. 4. Неуказанные предельные отклонения размеров: H14, h14, ±IT14/2. ЧД.01 Масса Масштай Рычаг Ned Nº noda Тжонта

СЧ20 ГОСТ 1412-85


Капиравал

Маскавскаго политехническаго

- 1. Выбрать оборудование с ЧПУ для получения заготовки.
- 2. Выбрать современное оборудование для механической обработки детали, описать его компоновку и принцип работы.

- 1. Выбрать оборудование с ЧПУ для получения заготовки.
- 2. Выбрать современное оборудование для механической обработки детали, описать его компоновку и принцип работы.
- 3. Разработать современную маршрутную технологию изготовления.

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СОГЛАСОВАНО **ФГБОУ ВО "РГРТУ", РГРТУ,** Евдокимова Елена Николаевна, Заведующий Простая подпись кафедрой ЭМОП