ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ «Промышленная и силовая электроника»

Фонд оценочных средств — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации. Основная задача – обеспечить оценку уровня сформированности компетенций, приобретаемых обучающимся в ходе изучения дисциплины.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся: на занятиях; по результатам выполнения контрольной работы; по результатам выполнения обучающимися индивидуальных заданий; по результатам проверки качества конспектов лекций и иных материалов.

По итогам курса обучающиеся сдают экзамен. Форма проведения очная — устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины.

При оценивании (определении) результатов освоения дисциплины применяется традиционная система (отлично, хорошо, удовлетворительно, неудовлетворительно, зачет, незачет). Оценка неудовлетворительно (незачет) выставляется в случае, если студент не выполнил в срок, предусмотренный учебным графиком, лабораторные работы, расчетные задания, контрольные работы.

Паспорт фонда оценочных средств по дисциплине (модулю)

№ п/п	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контролируе мой компетенци и (или её части)	Наименова ние оценочного средства
1.	Предмет «Промышленная и силовая электроника» и его задачи в системе подготовки бакалавра по направлению подготовки бакалавров — 13.03.02 «Электроэнергетика и электротехника» ООП - «Электроснабжение». Этапы развития дисциплины. Классификация и назначение элементов силовой электроники.	УК-6.1, УК- 6.2, ПК-3.1.	зачет

2.	Параметры усилительных устройств. Каскад с общим эмиттером.	УК-6.1, УК- 6.2, ПК-3.1.	зачет
3.	Электронные ключи на основе биполярных транзисторов. Элементы транзистрорнотранзисторной логики (ТТЛ).	УК-6.1, УК- 6.2, ПК-3.1.	зачет
4.	Элементы эмиттерно-связанной логики (ЭСЛ). Особенности схемотехники на основе ЭСЛ.	УК-6.1, УК- 6.2, ПК-3.1.	зачет
5.	Элементы интегрально-инжекционной логики (И2- Л).Электронные ключи на полевых транзисторах. Элементы КМОП логики.	УК-6.1, УК- 6.2, ПК-3.1.	зачет
6.	Электронные ключи на полевых транзисторах. Элементы КМОП логики.	УК-6.1, УК- 6.2, ПК-3.1.	зачет
7.	Каскад с выходом "открытый коллектор" и с "тремя" устойчивыми состояниями выхода.	УК-6.1, УК- 6.2, ПК-3.1.	зачет
8.	Сравнение различных типов логических элементов по предельной частоте переключений и потребляемой мощности. Рекомендации по конструированию схем на основе логических элементов.	УК-6.1, УК- 6.2, ПК-3.1.	зачет
9.	Функциональные узлы комбиционного типа на основе логических элементов.	УК-6.1, УК- 6.2, ПК-3.1.	зачет
10.	Отображение информации в цифровой электронике.	УК-6.1, УК- 6.2, ПК-3.1.	зачет
11.	Пороговые устройства. Триггер Шмитта. Компараторы аналоговых сигналов.	УК-6.1, УК- 6.2, ПК-3.1.	зачет
12.	Автогенераторы. Основные параметры. Условия самовозбуждения.	УК-6.1, УК- 6.2, ПК-3.1.	зачет
13.	Ждущие мультивибраторы (одновибраторы).	УК-6.1, УК- 6.2, ПК-3.1.	зачет
14.	Передача цифровых сигналов в электронике.	УК-6.1, УК- 6.2, ПК-3.1.	зачет
15.	Интегральные таймеры. Основные схемы включения. Технические параметры.	УК-6.1, УК- 6.2, ПК-3.1.	зачет
16.	Основы цифроаналогового преобразования Основы аналогоцифрового преобразования.	УК-6.1, УК- 6.2, ПК-3.1.	зачет

		УК-6.1, УК-	
17.	Классификация источников питания. Структурная		
	схема источника питания	6.2,	экзамен
	схема источника питания	ПК-3.1.	SKSamen
		УК-6.1, УК-	
18.	Однофазные выпрямители напряжения. Принцип	6.2,	экзамен
	работы на различные виды нагрузок.	,	JKSamen
		ПК-3.1.	
		УК-6.1, УК-	
19.	Трёхфазные выпрямители напряжения.	6.2,	экзамен
		ПК-3.1.	
		УК-6.1, УК-	
	Сглаживающие фильтры.	ľ	
20.		6.2,	экзамен
		ПК-3.1.	
	Управляемые выпрямители напряжения.	УК-6.1, УК-	
21.		6.2,	экзамен
21.	з правляемые выпрямители папряжения.	· · · · · · · · · · · · · · · · · · ·	JRJamen
		ПК-3.1.	
		УК-6.1, УК-	
22.	Умножители напряжения.	6.2,	D74D03.45**
	•	ПК-3.1.	экзамен
		УК-6.1, УК-	
22	Vracevskywaywa erekweere ere ere	ľ	24202
23.	Классификация стабилизаторов напряжения.	6.2,	экзамен
		ПК-3.1.	
	П	УК-6.1, УК-	
24.	Параметрические стабилизаторы напряжения и	6.2,	экзамен
	тока.	ПК-3.1.	51154111011
	Компенсационные стабилизаторы напряжения с непрерывным регулированием.	УК-6.1, УК-	
25.		6.2,	экзамен
		ПК-3.1.	
		УК-6.1, УК-	
26.	Компенсационные стабилизаторы напряжения с импульсным регулированием.	6.2,	экзамен
20.			JKJamen
		ПК-3.1.	
	Транзисторные инверторы с самовозбуждением.	УК-6.1, УК-	
27.		6.2,	24221424
		ПК-3.1.	экзамен
		УК-6.1, УК-	
20	Однотактные преобразователи напряжения.		DICOGNACIA
28.		6.2,	экзамен
		ПК-3.1.	
		УК-6.1, УК-	
29.	Двухтактные преобразователи напряжения.	6.2,	экзамен
	1 1 1	ПК-3.1.	
-		УК-6.1, УК-	
30.	D		
	Резонансные преобразователи напряжения.	6.2,	экзамен
		ПК-3.1.	
	Стабилизированные источники питания	УК-6.1, УК-	
31.		6.2,	экзамен
31.	с бестрансформаторным входом.	· · · · · · · · · · · · · · · · · · ·	ORGUNION .
	• • • • • • • • • • • • • • • • • • • •	ПК-3.1.	
32.	Влияние преобразователей напряжения на	УК-6.1, УК-	
		6.2,	DIMONIANT
	питающую сеть. Коэффициент мощности.	ПК-3.1.	экзамен
			1

Критерии оценивания компетенций (результатов)

- 1) Уровень усвоения материала, предусмотренного программой.
- 2) Умение анализировать материал, устанавливать причинно-следственные связи.
- 3) Ответы на вопросы: полнота, аргументированность, убежденность, умение.
- 4) Качество ответа (его общая композиция, логичность, убежденность, общая эрудиция).
- 5) Использование дополнительной литературы при подготовке ответов.

Уровень освоения сформированности знаний, умений и навыков по дисциплине оценивается в форме бальной отметки:

Оценка	заслуживает студент, обнаруживший всестороннее, систематическое и	
«Отлично»	глубокое знание учебно-программного материала, умение свободно	
	выполнять задания, предусмотренные программой, усвоивший основную и	
	знакомый с дополнительной литературой, рекомендованной программой.	
	Как правило, оценка «отлично» выставляется студентам, усвоившим	
	взаимосвязь основных понятий дисциплины в их значении для	
	приобретаемой профессии, проявившим творческие способности в	
	понимании, изложении и использовании учебно-программного материала.	
Оценка	заслуживает студент, обнаруживший полное знание учебно-программного	
«Хорошо»	материала, успешно выполняющий предусмотренные в программе задания,	
	усвоивший основную литературу, рекомендованную в программе. Как	
	правило, оценка «хорошо» выставляется студентам, показавшим	
	систематический характер знаний по дисциплине и способным к их	
	самостоятельному пополнению и обновлению в ходе дальнейшей учебной	
	работы и профессиональной деятельности.	
Оценка	заслуживает студент, обнаруживший знания основного учебно-	
«Удовлетво	программного материала в объеме, необходимом для дальнейшей учебы и	
рительно»	предстоящей работы по специальности, справляющийся с выполнением	
	заданий, предусмотренных программой, знакомый с основной литературой,	
	рекомендованной программой. Как правило, оценка «удовлетворительно»	
	выставляется студентам, допустившим погрешности в ответе на экзамене и	
	при выполнении экзаменационных заданий, но обладающим необходимыми	
	знаниями для их устранения под руководством преподавателя.	
Оценка	выставляется студенту, обнаружившему пробелы в знаниях основного	
«Неудовлет	учебно-программного материала, допустившему принципиальные ошибки в	
ворительно	выполнении предусмотренных программой заданий. Как правило, оценка	
»	«неудовлетворительно» ставится студентам, которые не могут продолжить	
	обучение или приступить к профессиональной деятельности по окончании	
	вуза без дополнительных занятий по соответствующей дисциплине.	

иповые контрольные задания или иные материалы.

Типовые контрольные задания или иные материалы. Заочная форма обучения

Типовые задания для самостоятельной работы

Чтение и анализ научной литературы по темам и проблемам курса.

Конспектирование, аннотирование научных публикаций.

Рецензирование учебных пособий, монографий, научных статей, авторефератов.

Анализ нормативных документов и научных отчётов.

Реферирование научных источников.

Сравнительный анализ научных публикаций, авторефератов и др.

Проектирование методов исследования в силовой электронике.

Подготовка выступлений для коллективной дискуссии.

Критерии оценивания компетенций (результатов)

- 1). Уровень усвоения материала, предусмотренного программой.
- 2). Умение анализировать материал, устанавливать причинно-следственные связи.
- 3). Ответы на вопросы: полнота, аргументированность, убежденность, умение
- 4). Качество ответа (его общая композиция, логичность, убежденность, общая эрудиция)
- 5). Использование дополнительной литературы при подготовке ответов.

Планы практических занятий

Модуль 1

Практическое занятие 1. Усилители переменного тока. Применение усилителей в схемотехнике.

Вопросы для обсуждения

- 1. Источники температурной нестабильности. Способы минимизации влияния на параметры усилительных устройств
- 2. Амплитудно-частотные и переходные характеристики каскада. Усилительные режимы и коэффициент усиления. Входное и выходное сопротивление. Частотные свойства.
- 3. Охарактеризуйте основные элементы силовой электроники.

Рекомендуемая литература

Основная: [1-5].

Дополнительная: [11-15].

Задания для самостоятельной работы: [1-5].

Практическое занятие 2. Электронные ключи на основе биполярных

транзисторов. Элементы транзистрорно-транзисторной логики (ТТЛ).

Цель: изучение методов построения цифровых логических схем.

Вопросы для обсуждения

- 1. Основные методы проектирования элементов ТТЛ.
- 2. Рассмотрите существующие и перспективные режимы цифровых схем.
- 3. Охарактеризуйте способы питания электроизмерительных приборов, используемых при проведении лабораторных работ в ВУЗЕ.

Задания для самостоятельной работы: [5-10].

Рекомендуемая литература

Основная: [11-15].

Дополнительная: [9-14].

Практическое занятие 3. Электронные ключи на полевых транзисторах.

Элементы КМОП логики

Цель: Изучение новых способов построения экономичных цифровых схем. Надёжность и экономичность цифровой электроники.

Вопросы для обсуждения

- 1. Основные параметры электронных ключей, построенных на основе элементов КМОП логики.
- 2. Переходные процессы в насыщенных транзисторных ключах. Способы повышения быстродействия транзисторных ключей. Цифровые логические элементы на основе электронных ключей на биполярных транзисторах (ТТЛ-элементы).

Задания для самостоятельной работы: [11- 14]

Основная: [1-5]

Дополнительная: [11-15].

Практическое занятие 4. Автогенераторы. Основные параметры. Условия самовозбуждения.

Цель: изучение устройства и принципа действия автогенераторов, применяемых в силовой электронике.

Вопросы для обсуждения

- 1. Основные параметры автогенераторов. Стабильность частоты колебаний. Варианты схем генераторов. Термокомпенсация и термостабилизация автогенераторов.
- 2. Стабилизация частоты автогенераторов при помощи кварцевого резонатора.
- 3. Термокомпенсация и термостабилизация автогенераторов.

Задания для самостоятельной работы: [15-19].

Рекомендуемая литература

Основная: [1-5].

Дополнительная: [11-15].

Модуль 2

Практическое занятие 5. Выпрямитель переменного напряжения. Однофазные и трехфазные выпрямители напряжения.

Вопросы для обсуждения

- 1. Принцип работы однотактного и двухтактного выпрямителя на активную нагрузку.
- 2. Нагрузочная характеристика. Внутреннее сопротивление выпрямителя. Действующие напряжение и ток.

Задания для самостоятельной работы

1. Представьте в виде схем и диаграмм, поясняющих принцип работы, выпрямители переменного напряжения.

Рекомендуемая литература

Основная: [6-10]

Дополнительная: [14,17].

Практическое занятие 6. Сглаживающие фильтры.

Цель: изучение методов снижения пульсаций переменной составляющей выпрямленного напряжения.

Вопросы для обсуждения

- 1. Основные схемы сглаживающих фильтров.
- 2. Расчет сглаживающих фильтров.
- 3. Основные параметры фильтров.

Задания для самостоятельной работы

1. Применение многозвенных фильтров.

Рекомендуемая литература

Основная: [6-10].

Дополнительная: [14,17].

Практическое занятие 7. Компенсационный стабилизатор с непрерывным регулированием.

Цель: Изучение способов построения и расчета линейных стабилизаторов.

Вопросы для обсуждения

1. Принцип работы компенсационного стабилизатора с непрерывным регулированием.

2. Дестабилизирующие факторы напряжения на нагрузке.

Задания для самостоятельной работы

1 Схема стабилизатора в интегральном исполнении.

2. Коэффициент стабилизации внутреннее сопротивление стабилизатора.

Основная: [6-10]

Дополнительная: [14,17].

Практическое занятие 8. Компенсационный стабилизатор с импульсным регулированием.

Цель: изучение устройства и принципа действия импульсных стабилизаторов напряжения. Вопросы для обсуждения

- 1. Способы управления импульсными стабилизаторами.
- 2. Диаграммы поясняющие принцип работы стабилизатора...

Задания для самостоятельной работы

- 1. Импульсный стабилизатор понижающего типа..
- 2. Инвертирующий стабилизатор.

Рекомендуемая литература

Основная: [6-10]

Дополнительная: [14,17].

Практическое занятие 9. Транзисторные преобразователи напряжения.

Цель: изучение устройства и принципа действия транзисторных преобразователей напряжения.

Вопросы для обсуждения

- 1. Преобразователи с самовозбуждением.
- 2. Однотактные и двухтактные преобразователи напряжения.

Задания для самостоятельной работы

- 1. Резонансный преобразователь напряжения.
- 2. Однотактный инвертор с рекуперацией энергии через диоды.

Рекомендуемая литература

Основная: [6-10]

Дополнительная: [14,17].

Задачи для решения на практических занятиях и контрольных работах

- 1. Изобразить форму напряжения на выходе дифференцирующей цепочки для t_u =1 мкс , R = 2кОм, C = 680 пФ, $R_{\it zen}$ = 0, $C_{\it h}$ = 0.
- 2. Изобразить форму напряжения на выходе интегрирующей цепочки для

$$t_u = 1$$
 MKC, $R = 330$ OM, $C = 1500$ $\pi\Phi$, $R_{2eH} = 0$, $C_u = 0$.

- 3. Записать аналитическое выражение для напряжения $U_2(t)$ на выходе дифференцирующей цепочки при t_u = 0,5 мкс, U_1 = 3,5 B, R = 680 Ом, C = 1500 пФ.
- 4. Записать аналитическое выражение для напряжения $U_2(t)$ на выходе интегрирующей цепочки при t_u = 1,5 мкс, U_1 = 3,5 B, R =510 Ом, C = 1500 пФ.

- 5. Изобразить устойчивые состояния ключа на основе биполярного транзистора на входных и выходных вольтамперных характеристиках.
- 6. Пояснить методику расчета переходных процессов в ключе на основе биполярного транзистора методом «заряда в базе».
- 7. Способы повышения быстродействия электронных ключей на основе биполярных транзисторов.
- 8. Элемент TTЛ с простым инвертором. Работа. Недостатки схемы.
- 9. Элемент $TT\Pi$ со сложным инвертором. Работа. Основные эксплуатационные параметры.
- 10. Элементы *ТТЛШ*. Назначение элементов схемы. Основные эксплуатационные параметры.
- 11. Формирователь короткого импульса из перепада $КМО\Pi$ уровня.
- 12. Использование незадействованных выводов в интегральной схемотехнике на основе $KMO\Pi$ -структур.
- 13. Особенности транспортировки, хранения и монтажа интегральных микросхем на основе $KMO\Pi$ -структур.
- 14. Сопряжение интегральных микросхем различных серий. ($TT\Pi \to \mathcal{I}C\Pi$, $TT\Pi \to KMO\Pi$, $KMO\Pi \to TT\Pi$).
 - 15. Автогенераторы гармонических колебаний. Трехточечные схемы. Условие баланса амплитуд и баланса фаз.
 - 16. LC автогенератор на основе операционного усилителя.
 - 17. *RC* автогенератор на основе операционного усилителя с мостом Вина-Робинсона в цепи положительной обратной связи.
 - 18. LC автогенератор на основе полевого транзистора.
 - 19. LC автогенератор на основе биполярного транзистора.

Модуль 2

- 20. Расчёт выпрямителя работающего на активную нагрузку.
- 21. Выпрямитель работающий на индуктивную и ёмкостную нагрузки.
- 22. Рассчитать различные виды сглаживающих фильтров: индуктивный, ёмкостный, RC фильтр и LC фильтр.
- 23. Рассчитать схему умножения напряжения на 6.
- 24. Рассчитать линейный стабилизатор напряжения.
- 25. Рассчитать импульсный стабилизатор напряжения.
- 26. Однотактный преобразователь напряжения.
- 27. Двухтактный инвертор напряжения

Задания для самостоятельной работы

- 1. Электронные ключи. Насыщенные э. к. на биполярных транзисторах
- 1. Переходные процессы в насыщенных транзисторных ключах. Способы повышения быстродействия транзисторных ключей.
- 2. Цифровые логические элементы на основе электронных ключей на биполярных транзисторах ($TT \Pi$ -элементы).
- 3. Интегрально- инжекционная логика. Принципы построения. Основные параметры.
- 4. Электронные ключи на основе полевых транзисторов. Основные параметры. Переходные процессы в электронном ключе на полевом транзисторе.
- 5. Транзисторный ключ на $M \not \square \Pi$ -транзисторе с динамической нагрузкой. Комплементарный ключ.
- 6. Логические элементы на *МДП*-транзисторах. Схемы, характеристики.
- 7. Асинхронные триггеры на логических элементах. Таблица истинности, переключательная функция. Временная диаграмма.

- 8. Несимметричный триггер.
- 9. Генераторы аналоговых и импульсных сигналов. Автогенераторы гармонических колебаний.
- 10. Трехточечные схемы автогенераторов.
- 11. *LC*-автогенератор на основе операционных усилителей. Схема. Анализ переходных процессов.
- 13. *LC*-автогенераторы на основе биполярных и полевых транзисторов.
- 14. Автогенераторы с кварцевой стабилизацией частоты.
- 15. Генераторы прямоугольных импульсов. Мультивибратор на логических элементах.
- 16. Автоколебательный мультивибратор на биполярных транзисторах.
- 17. Ждущие мультивибраторы. Одновибратор на биполярных транзисторах.
- 18. Одновибратор на логических элементах.
- 19. Генераторы прямоугольных импульсов на основе ОУ.
- 20. Генераторы управляемые напряжением.
- 21. Генераторы линейно изменяющегося напряжения. Основные параметры. ГЛИН на основе транзисторного ключа.
- 22. Генератор линейно- изменяющегося напряжения с токостабилизирующим элементом.
- 23. Генератор линейно- изменяющегося напряжения с положительной обратной связью.
- 24. Интегральные таймеры.
- 25. Цифровые функциональные узлы. Пример синтеза ЦФУ.
- 26. Шифраторы и дешифраторы цифровых сигналов.
- 27. Мультиплексоры цифровых сигналов.
- 28. Демультиплексоры цифровых сигналов.
- 29. Сопряжение интегральных микросхем различных серий.
- 30. Сопряжение интегральных микросхем с транзисторными ключами.

Модуль 2

- 31. Структурная схема источника питания.
- 32. Однополупериодная схема выпрямителя. Работа на активную нагрузку.
- 33. Двухполупериодная схема выпрямителя с активной нагрузкой.
- 34. . Двухполупериодный выпрямитель с нулевым выводом, работа на активно индуктивную нагрузку.
- 35. Работа выпрямителя на емкостную нагрузку.
- 36. Расчет емкостного фильтра.
- 37. Индуктивный фильтр.
- 38. Расчет индуктивно-емкостного Γ образного фильтра.
- 39. Расчет $RC \Gamma$ образного фильтра.
- 40. Управляемый выпрямитель с выводом нулевой точки. Режим работы на активнуюнагрузку.
 - 41. Симметричные схемы умножения напряжения.
 - 42. Несимметричная схема умножения напряжения.
 - 43. Трехфазный выпрямитель.
 - 44. Параметрический стабилизатор напряжения.
 - 45. Компесационный стабилизатор напряжения с непрерывным регулированием.

Коэффициент стабилизации

- 46. Стабилизаторы напряжения с импульсным регулированием.
- 47. Схема непрерывно-импульсного стабилизатора.
- 48. Стабилизированные источники питания с безтрансформаторным входом.
- 49. Двухтактный транзисторный инвертор.

- 50. Однотактный преобразователь напряжения с прямым и обратным включением диода.
 - 51. Резонансные преобразователи напряжения.

Типовые контрольные вопросы к экзамену

Модуль I

№	Вопрос
1.	Предмет «Силовая электроника» и его задачи в системе подготовки бакалавра по направлению подготовки бакалавров — 13.03.02 «Электроэнергетика и электротехника» ООП - «Электроснабжение». Этапы развития дисциплины. Классификация и назначение элементов силовой электроники.
2.	Каскад с общим эмиттером. Схема каскада, режим по постоянному и переменному току. Усилительные режимы и коэффициент усиления. Входное и выходное сопротивление. Частотные свойства.
3.	Сигналы, используемые в цифровой электронике. Электронные ключи. Основные параметры электронных ключей. Насыщенные электронные ключи. Элементы ТТЛ.
4.	Сравнение технических характеристик элементов ТТЛ, ЭСЛ и КМОП. Рекомендации по выбору элементной базы цифровых устройств. Устранение бросков тока по шине питания. Использование незадействованных выводов. Меры предосторожности по исключению действия статического электричества
5.	Светодиодные, вакуумные, жидкокристаллические индикаторы. Семисегментные индикаторы. Дешифраторы знаков.
6.	Стабильность частоты колебаний. Стабилизация частоты автогенераторов при помощи кварцевого резонатора. Варианты схем генераторов. Термокомпенсация и термостабилизация автогенераторов.
7.	Классификация ждущих мультивибраторов. Схемы, параметры и характеристики. Требования к времязадающим элементам мультивибраторов.
8.	Основы цифроаналогового преобразования Основы аналогоцифрового преобразования.

	7
9.	Классификация источников питания. Структурная схема источника питания
10.	Выпрямители напряжения. Принцип работы на различные виды нагрузок.
11.	Сглаживающие фильтры.
12.	Умножители напряжения.
13.	Управляемые выпрямители напряжения.
14.	Классификация стабилизаторов напряжения.
15.	Параметрические стабилизаторы напряжения и тока.
16.	Компенсационные стабилизаторы напряжения с непрерывным регулированием. Компенсационные стабилизаторы напряжения с импульсным регулированием
17.	Транзисторные инверторы с самовозбуждением. Однотактные преобразователи напряжения
18.	Резонансные преобразователи напряжения. Стабилизированные источники питания с бестрансформаторным входом. Влияние преобразователей напряжения на питающую сеть. Коэффициент мощности.