МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

КАФЕДРА ПРОМЫШЛЕННА

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

дисциплины

«Основы проектирования электронной компонентной базы»

Фонд оценочных средств — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

При оценивании (определении) результатов освоения дисциплины применяется традиционная система (отлично, хорошо, удовлетворительно, неудовлетворительно).

1. Паспорт фонда оценочных средств по дисциплине

№ п/ п	№ разде ла	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код кон- троли- руемой компетен- ции (или её части)	Этап формирования контролируемой компе- тенции (или её части)	Наименование оценочного средства
1	1	Введение. Электронная компонентная база. Про-ектирование СБИС	ОПК-3.1 ОПК-3.2	Лекционные и лабораторные занятия обучающихся в течение учебного семестра	Отчеты по лабораторным работам с периодичностью 1 раз в две недели, экзамен
2	2	Структура конструк- торского файла. Испы- тательные файлы	ОПК-3.1 ОПК-3.2	Лекционные, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Отчеты по лабораторным работам с периодичностью 1 раз в две недели, экзамен
3	3	Основные синтаксиче- ские конструкции комби- национных устройств	ОПК-3.1 ОПК-3.2	Лекционные, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Отчеты по лабораторным работам с периодичностью 1 раз в две недели, экзамен
4	4	Иерархическое построе- ние проектов	ОПК-3.1 ОПК-3.2	Лекционные, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Отчеты по лабораторным работам с периодичностью 1 раз в две недели, экзамен
5	5	Универсальные парамет- ризированные модули	ОПК-3.1 ОПК-3.2	Лекционные, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Отчеты по лабораторным работам с периодичностью 1 раз в две недели, экзамен
6	6	Основные синтаксиче- ские конструкции после- довательностных уст-	ОПК-3.1 ОПК-3.2	Лекционные, лабораторные и самостоятельные занятия обу-	Отчеты по лабораторным работам с периодичностью 1

		ройств		чающихся в течение учебного семестра	раз в две недели
7	7	Архитектура ПЛИС ти- na CPLD и FPGA	ОПК-3.1 ОПК-3.2	Лекционные, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Лекционные, ла- бораторные и са- мостоятельные за- нятия обучающих- ся в течение учеб- ного семестра
8	8	Способы конфигурирова- ния ПЛИС	ОПК-3.1 ОПК-3.2	Лекционные, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Лекционные, ла- бораторные и са- мостоятельные за- нятия обучающих- ся в течение учеб- ного семестра
9	9	Синтезируемые и не синтезируемые конст- рукции	ОПК-3.1 ОПК-3.2	Лекционные, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	Лекционные, ла- бораторные и са- мостоятельные за- нятия обучающих- ся в течение учеб- ного семестра

2 Формы текущего контроля

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся: на занятиях, по результатам выполнения обучающимися индивидуальных заданий, проверки качества конспектов лекций и иных материалов.

Текущий контроль по дисциплине «Основы проектирования электронной компонентной базы» проводится в виде проверки заданий, выполняемых самостоятельно и на лабораторных занятиях, а также экспресс — опросов и заданий по лекционным материалам и лабораторным работам. Учебные пособия, рекомендуемые для самостоятельной работы и подготовки к лабораторным занятиям обучающихся по дисциплине «Основы проектирования электронной компонентной базы», содержат необходимый теоретический материал в краткой форме по каждому из разделов дисциплины.

3 Формы промежуточного контроля

Формой промежуточного контроля по дисциплине является экзамен. К экзамену допускаются обучающиеся, полностью выполнившие все виды учебной работы, предусмотренные учебным планом и настоящей программой. Форма проведения экзамена – устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины.

4 Критерии оценки компетенций обучающихся и шкалы оценивания

Оценка степени формирования контролируемых компетенций у обучающихся на различных этапах их формирования проводится преподавателем во время лекций, консультаций и лабораторных занятий по шкале оценок «зачтено» — «не зачтено». Текущий контроль по дисциплине проводится в виде проверки заданий, выполняемых самостоятельно, и на лабораторных занятиях, а также экспресс — опросов и заданий по лекционным материалам

и лабораторным работам. Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах лабораторных занятий и самостоятельной работы оценивается по критериям шкалы оценок - «зачтено» — «не зачтено». Освоение материала дисциплины и достаточно высокая степень формирования контролируемых компетенций обучающегося (эффективное и своевременное выполнение всех видов учебной работы, предусмотренных учебным планом и настоящей программой) служат основанием для допуска обучающегося к этапу промежуточной аттестации - экзамену.

Целью проведения промежуточной аттестации (экзамена) является проверка общекультурных, общепрофессиональных и профессиональных компетенций, приобретенных студентом при изучении дисциплины «Основы проектирования электронной компонентной базы».

Уровень теоретической подготовки студента определяется составом и степенью формирования приобретенных компетенций, усвоенных теоретических знаний и методов, а также умением осознанно, эффективно применять их при решении задач целенаправленного применения различных групп материалов в электронной технике.

Экзамен организуется и осуществляется, как правило, в форме собеседования. Средством, определяющим содержание собеседования студента с экзаменатором, является утвержденный экзаменационный билет, содержание которого определяется ОПОП и рабочей программой предмета. Экзаменационный билет включает в себя, как правило, два вопроса относящихся к теоретическим разделам дисциплины.

Оценке на заключительной стадии экзамена подвергаются устные ответы экзаменующегося на вопросы экзаменационного билета, а также дополнительные вопросы экзаменатора.

Применяются следующие критерии оценивания компетенций (результатов):

- -уровень усвоения материала, предусмотренного программой;
- -умение анализировать материал, устанавливать причинно-следственные связи;
- полнота, аргументированность, убежденность ответов на вопросы;
- -качество ответа (общая композиция, логичность, убежденность, общая эрудиция);
- -использование дополнительной литературы при подготовке к этапу промежуточной аттестации.

Применяется четырехбальная шкала оценок: "отлично", "хорошо", "удовлетворительно", "неудовлетворительно", что соответствует шкале "компетенции студента полностью соответствуют требованиям $\Phi \Gamma OC$ BO", "компетенции студента в основном соответствуют требованиям $\Phi \Gamma OC$ BO", "компетенции студента в основном соответствуют требованиям $\Phi \Gamma OC$ BO", "компетенции студента не соответствуют требованиям $\Phi \Gamma OC$ BO".

К оценке уровня знаний и практических умений и навыков рекомендуется предъявлять следующие общие требования.

«Отлично»:

глубокие и твердые знания программного материала программы дисциплины, понимание сущности и взаимосвязи рассматриваемых явлений (процессов);

полные, четкие, логически последовательные, правильные ответы на поставленные вопросы; умение выделять главное и делать выводы.

«Хорошо»:

достаточно полные и твёрдые знания программного материала дисциплины, правильное понимание сущности и взаимосвязи рассматриваемых явлений (процессов);

последовательные, правильные, конкретные, без существенных неточностей ответы на поставленные вопросы, свободное устранение замечаний о недостаточно полном освещении отдельных положений при постановке дополнительных вопросов.

«Удовлетворительно»:

знание основного программного материала дисциплины, понимание сущности и взаимосвязи основных рассматриваемых явлений (процессов):

понимание сущности обсуждаемых вопросов, правильные, без грубых ошибок ответы на поставленные вопросы, несущественные ошибки в ответах на дополнительные вопросы.

«Неудовлетворительно»:

отсутствие знаний значительной части программного материала дисциплины; неправильный ответ хотя бы на один из вопросов, существенные и грубые ошибки в ответах на дополнительные вопросы, недопонимание сущности излагаемых вопросов, неумение применять теоретические знания при решении практических задач, отсутствие навыков в обосновании выдвигаемых предложений и принимаемых решений.

При двух вопросах в билете общая оценка выставляется следующим образом: «отлично», если все оценки «отлично» или одна из них «хорошо»; «хорошо», если не более одной оценки «удовлетворительно»; «удовлетворительно», если две оценки «удовлетворительно»; «неудовлетворительно», если одна оценка «неудовлетворительно», а вторая не выше чем «удовлетворительно» или две оценки «неудовлетворительно».

5 Типовые контрольные вопросы по дисциплине «Основы проектирования электронной компонентной базы»

- 1. Основные виды СБИС.
- 2. Сущность процесса проектирования цифрового устройства на базе ПЛИС.
- 3. Основные логические элементы цифровой техники.
- 4. Основные синтаксические блоки конструкторского файла на языке Verilog.
- 5. Основные синтаксические блоки испытательного файла на языке Verilog.
- 6. Порты в модуле цифрового устройства. Назначение, типы портов.
- 7. Операторы initial и always, назначение, применение в испытательных файлах.
- 8. Области применения ПЛИС.
- 9. Формирование логической функции из таблицы истинности. Совершенная дизъюнктивная нормальная форма.
- 10. Формирование логической функции из таблицы истинности. Совершенная коньюктивная нормальная форма.
 - 11. Комбинационные и последовательностные логические схемы.
 - 12. Комментарии в языке Verilog.
 - 13. Системные задачи, общее представление, назначение и работа задачи \$stop.
- 14. Основные этапы подготовки проекта и его функционального моделирования в пакете ModelSim.
 - 15. Побитовые операции в языке Verilog...
 - 16. Модули нижнего уровня. Описание и объявление в проекте.
 - 17. Принцип функционирования двоичного дешифратора.
- 18. Поименный и позиционный способы подключения. портов модулей при объявлении экземпляров.
 - 19. Директивы компилятора языка Verilog.
 - 20. Реализация внутренних электрических цепей в модулях верхнего уровня.
 - 21. Компаратор многоразрядных данных.
- 22. Использование оператора assign для построения функциональной модели устройства.
 - 23. Процедурные операторы в конструкторских файлах.
 - 24. Способы присваивания внутри процедурных операторов.
 - 25. Проектирование полного одноразрядного сумматора.
 - 26. Сумматоры многоразрядных чисел. Пример проектирования.
 - 27. Условный оператор if ... else в процедурном операторе.
 - 28. Операторы выбора case, casex, casez.
 - 29. Ј-К триггер.
 - 30. Операторы цикла.

- 31. Последовательные и параллельные блоки в Verilog.
- 32. Задачи и функции в Verilog.
- 33. Правила расширения операндов и приведения типов в операциях.
- 34. Назначение и возможности среды моделирования ModelSim.
- 35. Назначение и возможности САПР Quartus II.
- 36. Регистры сдвига.
- 37. Управление временем в процедурных операторах.
- 38. Каким образом обеспечить реагирование оператора always на положительный и отрицательный фронты синхросигнала?
- 39. Какие элементы списка реагирования оператора always следует использовать для построения комбинационных устройств, а какие для последовательностных?
- 40. В каких случаях в процедурных операторах следует применять операцию блокирующего процедурного присваивания, а в каких не блокирующего?
 - 41. Какие способы ввода логики проекта поддерживает САПР Quartus?
- 42. В каких случаях целесообразно использовать ПЛИС в качестве электронной компонентной базы?
- 43. Какие физические процессы происходят при конфигурировании (программировании) микросхемы ПЛИС?

6 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

В качестве методических материалов, определяющих процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций у обучающихся, используются перечни контрольных вопросов, приведенных в методических указаниях к лабораторным и самостоятельным занятиям по дисциплине «Основы проектирования электронной компонентной базы.

Кроме того, в лаборатории, где проводятся лабораторные работы, на первом занятии студентам подробно излагаются и в дальнейшем рекомендуются для постоянного применения специальные методические материалы, регламентирующие порядок проведения лабораторных работ, оформления и защиты отчетов, порядок и критерии оценки письменных и устных отчетов обучающихся по дисциплине (или ее части). К выполнению лабораторной работы не допускаются студенты, не оформившие отчеты по лабораторным работам или не защитившие отчетов по двум работам.

Методические требования к оформлению отчетов по лабораторным работам

Отчет по лабораторной работе должен содержать следующие элементы:

- номер, название и цель работы;
- чертеж принципиальной электрической схемы, выполненный карандашом по линейке с соблюдением требований ЕСКД;
- текст конструкторского файла;
- текст испытательного файла;
- осциллограммы входных и выходных сигналов моделируемого устройства;

При выполнении лабораторной работы каждому студенту необходимо иметь полностью оформленный отчет по ранее выполненной работе и отчет по выполняемой работе, содержащий все перечисленные элементы.

Методические требования к структуре аналитического отчета по самостоятельной работе:

- 1) Титульный лист;
- 2) Часть I «Аналитическая часть» анализ раздела индивидуального задания по дисциплине, формулировка актуальности темы, цели и задач разработки или исследования объекта и предмета разработки или исследования, оценка современного состояния изучаемой проблемы;

- 3) Часть II «Основная часть» результаты выполнения основной части раздела индивидуального задания по дисциплине (обзор научно-методических информационных источников современных научных статей и монографий по теме, выявление вопросов, требующих углубленного изучения; формирование и обоснование собственной точки зрения на рассматриваемые проблемы и возможные пути их разрешения; необходимые расчеты, моделирование и другие задания, предусмотренные темой самостоятельной работы. Материал не должен иметь только компилятивный характер, но обладать новизной, практической значимостью, отражать точку зрения автора на изучаемые проблемы и результаты проделанной работы.
- 4) Часть III «Заключение» заключение и выводы по результатам выполненной работы;
 - 5) Список использованных научных и научно-методических источников;
 - 6) Приложения (при необходимости).

Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах лабораторных занятий (после каждой лабораторной работы) и самостоятельной работы (на консультациях) оценивается по критериям шкалы оценок - «зачтено» – «не зачтено».

Оценки "зачтено" заслуживает обучающийся, обнаруживший знания основного учебного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по профессии, знакомый с основной литературой, рекомендованной программой, справляющийся с выполнением графика и содержания заданий, предусмотренных учебным планом и настоящей программой.

Оценка "не зачтено" выставляется обучающемуся, обнаружившему пробелы в знаниях основного учебного материала, допустившему принципиальные ошибки в выполнении заданий, предусмотренных учебным планом и настоящей программой.

1 Перечень компетенций с указанием этапов их формирования

В соответствии с требованиями федерального государственного образовательного стандарта высшего образования по направлению подготовки бакалавров 11.03.04 «Электроника и наноэлектроника» при освоении дисциплины «Основы проектирования электронной компонентной базы» формируются следующие компетенции: ОПК-2, ОПК-7, ПК-1, ПК-3, ПК-5.

Указанные компетенции формируются в соответствии со следующими этапами:

- 1) формирование и развитие теоретических знаний, предусмотренных указанными компетенциями (лекционные и лабораторные занятия, самостоятельная работа студентов);
- 2) приобретение и развитие практических умений предусмотренных компетенциями (лабораторные работы, самостоятельная работа студентов);
- 3) закрепление теоретических знаний, умений и практических навыков, предусмотренных компетенциями, в ходе выполнения конкретных заданий на лабораторных работах и их защитах, ответов на тестовые задания (текущий контроль), а также в процессе подготовки и сдачи отчетов по самостоятельной работе и экзамена (промежуточный контроль).

2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Сформированность каждой компетенции в рамках освоения данной дисциплины оценивается по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

При достаточном качестве освоения более 80% приведенных знаний, умений и навыков преподаватель оценивает освоение данной компетенции в рамках настоящей дисциплины на эталонном уровне, при освоении более 60% приведенных знаний, умений и навыков — на продвинутом, при освоении более 40% приведенных знаний умений и навыков — на пороговом уровне. При освоении менее 40% приведенных знаний, умений и навыков компетенция в рамках настоящей дисциплины считается неосвоенной.

Уровень сформированности каждой компетенции на различных этапах ее формирования в процессе освоения данной дисциплины оценивается в ходе текущего контроля успеваемости и представлено различными видами оценочных средств.

Оценке сформированности в рамках данной дисциплины подлежат перечисленные ниже компетенции.

- ОПК-2 Способность выявлять естественнонаучную сущность проблем, возникающих в ходе профессиональной деятельности, привлекать для их решения соответствующий физикоматематический аппарат.
- ОПК-7 Способностью учитывать современные тенденции развития электроники, измерительной и вычислительной техники, информационных технологий в своей профессиональной деятельности.
- ПК-1 Способность строить простейшие физические и математические модели приборов, схем, устройств и установок электроники и наноэлектроники различного функционального назначения, а также использовать.
- ПК-3 Готовность анализировать и систематизировать результаты исследований, представлять материалы в виде научных отчетов, публикаций, презентаций стандартные программные средства их компьютерного моделирования.
- ПК-5 Готовность выполнять расчет и проектирование электронных приборов, схем и устройств различного функционального назначения в соответствии с техническим заданием с использованием средств автоматизации проектирования

Критерии оценивания промежуточной аттестации представлены в таблице 1.

Шкала оценивания Критерии оценивания «отлично» студент должен: продемонстрировать глубокое и прочное усвоение знаний материала; исчерпывающе, последовательно, логически стройно изложить теоретический материал; правильно формулировать определения; уметь сделать выводы по излагаемому материалу; безупречно ответить не только на вопросы билета, но и на дополнительные вопросы в рамках рабочей программы дисциплины; продемонстрировать правильно выполнять практические умение задания, предусмотренные программой. студент должен: продемонстрировать достаточно полное знание «хорошо» материала; продемонстрировать знание основных теоретических понятий; достаточно последовательно, грамотно и логически стройно излагать материал; уметь сделать достаточно обоснованные выводы по излагаемому материалу; ответить на все вопросы билета; продемонстрировать умение правильно выполнять практические задания, предусмотренные программой, при этом возможно допустить непринципиальные ошибки. «удовлетворительно» студент должен: продемонстрировать общее знание изучаемого материала; основную рекомендуемую дисциплины учебную литературу; уметь строить ответ

соответствии со структурой излагаемого вопроса; показать общее

Таблица 1 - Критерии оценивания промежуточной аттестации

	владение понятийным аппаратом дисциплины; уметь устранить	
	допущенные погрешности в ответе на теоретические вопросы	
	и/или при выполнении практических заданий под руководством	
	преподавателя, либо (при неправильном выполнении	
	практического задания) по указанию преподавателя выполнить	
	другие практические задания того же раздела дисциплины.	
«неудовлетворительно»	ставится в случае: незнания значительной части программного	
	материала; не владения понятийным аппаратом дисциплины;	
	существенных ошибок при изложении учебного материала;	
	неумения строить ответ в соответствии со структурой	
	излагаемого вопроса; неумения делать выводы по излагаемому	
	материалу. Как правило, оценка «неудовлетворительно» ставится	
	студентам, которые не могут продолжить обучение по	
	образовательной программе без дополнительных занятий по	
	соответствующей дисциплине (формирования и развития	
	компетенций, закрепленных за данной дисциплиной). Оценка	
	«неудовлетворительно» выставляется также, если студент после	
	начала экзамена отказался его сдавать или нарушил правила	
	сдачи экзамена (списывал, подсказывал, обманом пытался	
	получить более высокую оценку и т.д.).	

3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы

Примеры **заданий** и **контрольных вопросов** к лабораторным работам, выполняемым для приобретения и развития знаний и практических умений, предусмотренных компетенциями.

Лабораторная работа № 3

Массивы примитивов

Цель работы — освоение подготовки проектов, включающих использование массивов примитивов и примитивов буферов с z-состоянием. Применение операций сравнения и управляющего оператора if .. else внутри процедурного оператора always.

2. Порядок выполнения работы

1. Создать на языке Verilog в пакете ModelSim с использованием массива примитивов логики и примитива буфера с Z-состоянием проект компаратора 8-разрядных двоичных чисел с входом разрешения работы. Компаратор должен формировать на выходе логическое значение единицы при совпадении всех разрядов сравниваемых чисел и значение нуля в противном случае. Кроме двух восьмиразрядных входов для сравниваемых данных компаратор должен быть снабжен управляющим входом разрешения работы, который при поступлении на него единицы транслирует на выход результат сравнения, а при поступлении нуля переводит выход в Z-состояние.

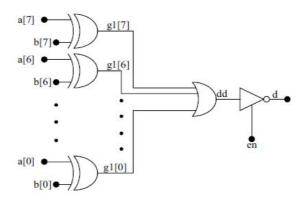


Рис. 3.1. Схема возможного варианта реализации 8-разрядного компаратора

Пример схемной реализации компаратора приведен на рис. 3.1.

- 2. Подготовить испытательный файл к проекту компаратора, откомпилировать файлы проекта и, промоделировав проект, убедиться в его работоспособности или выявить имеющиеся ошибки.
- 3. Создать второй вариант проекта этого же компаратора с использованием оператора непрерывного присваивания assign и побитовых операций над 8-разрядными входными данными. Для формирования итогового результата сравнения (см. элемент dd на рис. 3.1) применить унарную побитовую операцию. Для обеспечения функции разрешения работы с помощью управляющего входа использовать процедурный оператор always, который будет реагировать на любое изменение результата и управляющего входа. Внутри оператора always разместить условный оператор if .. else, который обеспечит выбор между подачей на выход результата сравнения и переводом выхода в Z-состояние.
- 4. Используя испытательный файл, подготовленный в п. 2, промоделировав новый проект, убедиться в его работоспособности или выявить имеющиеся ошибки.
- 5. Повторить пп. 3 и 4 для третьего варианта компаратора, в котором для получения результата используется операция сравнения многоразрядных данных, а функционирование входа разрешения работы реализовано аналогично п. 3.
 - 6. Подготовить отчет.

3. Контрольные вопросы

- 1. Побитовые операции.
- 2. Унарные побитовые операции.
- 3. Операции сравнения и операции идентичности.
- 4. Принцип работы компаратора многоразрядных данных.
- 5. Примитивы буферов с управляемым высокоимпедансным состоянием выхода.
- 6. Использование в проекте массивов примитивов и модулей.
- 7. Процедурный оператор always.
- 8. Условный оператор if ... else в процедурном операторе.
- 9. Какой из вариантов реализации цифрового компаратора, выполненных в работе, является наиболее удачным?
 - 10. Каково назначение цифрового компаратора?

Полный перечень заданий и вопросов к лабораторным работам, выполняемым для приобретения и развития знаний и практических умений, предусмотренных компетенциями, приведен в соответствующих методических указаниях.

- 1. Основы проектирования электронной компонентной базы (часть 1): методические указания к лабораторным работам / Рязан. гос. радиотехн. н-т; сост. А. С. Ашихмин. Рязань: $P\Gamma PTY$, 2012. 36 с.
- 2. Основы проектирования электронной компонентной базы (часть 2): методические указания к лабораторным работам / Рязан. гос. радиотехн. н-т; сост. А. С. Ашихмин.—Рязань: РГРТУ, 2014. 44 с.

Список типовых контрольных вопросов для оценки уровня сформированности знаний, умений и навыков, предусмотренных компетенциями, закрепленными за дисциплиной.

- 1. Основные синтаксические блоки конструкторского файла на языке Verilog.
- 2. Основные синтаксические блоки испытательного файла (testbench) на языке Verilog.
- 3. Порты в модуле цифрового устройства. Назначение, типы портов.
- 4. Переменные типа wire и reg. Назначение, объявление, особенности.
- 5. Примитивы булевых функций в языке Verilog. Таблицы истинности, объявление, способы подключения входов и выходов.
 - 6. Оператор assign, назначение, особенности применения.
 - 7. Объявление экземпляра модуля внутри испытательного файла.
 - 8. Операторы initial и always, назначение, применение в испытательных файлах.
 - 9. Применение временных задержек при моделировании.
 - 10. Системные задачи, общее представление, назначение и работа задачи \$stop.
 - 11. Основные этапы подготовки проекта и его функционального моделирования в паке-

те ModelSim.

- 12. Побитовые операции в языке Verilog.
- 13. Объявление экземпляров модулей нижнего уровня в проекте.
- 14. Описание модулей нижнего уровня.
- 15. Позиционный способ подключения портов примитивов и модулей при объявлении экземпляров.
 - 16. Поименный способ подключения портов модулей при объявлении экземпляров.
 - 17. Реализация внутренних электрических цепей в модулях верхнего уровня.
 - 18. Принцип функционирования двоичного дешифратора.
 - 19. Побитовые операции.
 - 20. Унарные побитовые операции.
 - 21. Операции сравнения и операции идентичности.
 - 22. Принцип работы компаратора многоразрядных данных.
 - 23. Примитивы буферов с управляемым высокоимпедансным состоянием выхода.
 - 24. Использование в проекте массивов примитивов и модулей.
 - 25. Процедурный оператор always.
 - 26. Условный оператор if ... else в процедурном операторе.
- 27. Какой из вариантов реализации цифрового компаратора, выполненных в работе, является наиболее удачным?
 - 28. Каково назначение цифрового компаратора?
 - 29. Какие виды констант существуют в языке Verilog?
 - 30. Назначение и порядок применения типа данных parameter.
 - 31. Арифметические операции.
 - 32. Операции конкатенации и тиражирования.
 - 33. Правила расширения операндов и приведения типов в операциях.
 - 34. Способы переопределения констант типа parameter.
 - 35. Работа одноразрядного двоичного сумматора.

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

ПОДПИСАНО **ФГБОУ ВО "РГРТУ", РГРТУ,** Круглов Сергей Александрович, Заведующий кафедрой ПЭЛ

20.08.25 18:56 (MSK)

Простая подпись