МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждениевысшего образования РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА

Кафедра «Электронные приборы»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

«Элементы электронной техники»

Фонд оценочных средств — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача – обеспечить оценку уровня сформированности общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся: на занятиях; по результатам выполнения обучающимися индивидуальных заданий; по результатам проверки качества конспектов лекций, выполнения практических заданий, отчетов по лабораторным работам и иных материалов. При оценивании (определении) результатов освоения дисциплины применяется система зачтено/не зачтено

По итогам курса обучающиеся сдают зачет. Форма проведения очная – устный ответ, по утвержденным билетам, сформулированным с учетом содержания учебной дисциплины. В билет включается два теоретических вопроса по темам курса.В процессе подготовки к устному ответу студент может составить в письменном виде план ответа, включающий в себя определения, выводы формул, рисунки и т.п.

Паспорт фонда оценочных средств по дисциплине (модулю)

№ п/п	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контролируем ойкомпетенци и (или её части)	Вид, метод, форма оценочного мероприятия
-----------------	---	--	---

1.	Резисторы.	ПК-1.1, ПК- 2.1, ПК-2.2, ПК-3.1	Отчеты по лабораторным работам; зачет
2.	Конденсаторы.	ПК-1.1, ПК- 2.1, ПК-2.2, ПК-3.1	Отчеты по практическим занятиям
3.	Катушки индуктивности.	ПК-1.1, ПК- 2.1, ПК-2.2, ПК-3.1	зачет
4.	Полупроводниковые диоды.	ПК-1.1, ПК- 2.1, ПК-2.2, ПК-3.1	Отчеты по лабораторным работам; зачет
5.	Биполярные транзисторы.	ПК-1.1, ПК- 2.1, ПК-2.2, ПК-3.1	Зачет
6.	Полевые транзисторы.	ПК-1.1, ПК- 2.1, ПК-2.2, ПК-3.1	Зачет
7.	Тиристоры.	ПК-1.1, ПК- 2.1, ПК-2.2, ПК-3.1	Зачет
8.	Приборы с зарядовой связью.	ПК-1.1, ПК- 2.1, ПК-2.2, ПК-3.1	Зачет
9.	Элементы оптоэлектроники.	ПК-1.1, ПК- 2.1, ПК-2.2, ПК-3.1	Отчеты по лабораторным работам; зачет

10.	Полупроводниковые гальваномагнитные приборы.	ПК-1.1, ПК- 2.1, ПК-2.2, ПК-3.1	Отчеты по лабораторным работам; зачет
11.	Элементы акустоэлектроники.	ПК-1.1, ПК- 2.1, ПК-2.2, ПК-3.1	Зачет

Критерии оценивания компетенций (результатов)

- 1) Уровень усвоения материала, предусмотренного программой.
- 2) Умение анализировать материал, устанавливать причинно-следственные связи.
- 3) Качество ответа на вопросы: полнота, аргументированность, убежденность, логичность.
- 4) Содержательная сторона и качество материалов, приведенных в отчетах студента по лабораторным работам, практическим занятиям.
 - 5) Использование дополнительной литературы при подготовке ответов.

Оценка степени формирования указанных выше контролируемых компетенций у обучающихся на различных этапах их формирования проводится преподавателем во время лекций, консультаций и лабораторных занятий по шкале оценок «зачтено» - «не зачтено». Текущий контроль по дисциплине проводится в виде тестовых опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно, на практических и лабораторных занятиях, а также экспресс - опросов и заданий по материалам, практическим занятиям и лабораторным лекционным Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах практических, лабораторных занятий и самостоятельной работы оценивается по критериям шкалы оценок - «зачтено» - «не зачтено». Освоение материала дисциплины и достаточно высокая степень формирования контролируемых компетенций обучающегося (эффективное и своевременное выполнение всех видов учебной работы, предусмотренных учебным планом и настоящей программой) служат основанием для допуска обучающегося к этапу промежуточной аттестации - зачету.

Целью проведения промежуточной аттестации (зачета) является проверка профессиональных компетенций, приобретенных студентом при изучении дисциплины «Элементы электронной техники».

Уровень теоретической подготовки студента определяется составом и степенью формирования приобретенных компетенций, усвоенных теоретических знаний и методов, а также умением осознанно, эффективно применять их при решении задач исследования параметров и характеристик элементов электроники.

Оценка проводится по шкале оценок «зачтено» - «не зачтено».

Оценка «зачтено» выставляется студенту, который прочно усвоил предусмотренный программный материал; правильно, аргументировано ответил на все вопросы, с приведением примеров; показал глубокие систематизированные знания, владеет приемами рассуждения и сопоставляет материал из разных источников: теорию связывает с практикой, другими темами данного курса, других изучаемых предметов; без ошибок выполнил практическое задание.

Обязательным условием выставленной оценки является правильная речь в быстром или умеренном темпе. Дополнительным условием получения оценки «зачтено» могут стать хорошие успехи при выполнении самостоятельной и контрольной работы, систематическая активная работа на семинарских занятиях.

Оценка «не зачтено» выставляется студенту, который не справился с 50% вопросов и заданий билета, в ответах на другие вопросы допустил существенные ошибки. Не может ответить на дополнительные вопросы, предложенные преподавателем. Целостного представления о взаимосвязях, компонентах, этапах развития культуры у студента нет. Оценивается качество устной и письменной речи, как и при выставлении положительной оценки.

Типовые контрольные задания или иные материалы

Список вопросов к зачету

- 1. Классификация резисторов.
- 2. Основные параметры резисторов.
- 3. Переменные резисторы. Реостат, потенциометр.
- 4. Терморезисторы: термисторы, позисторы. Материалы, характеристики.
- 5. Применение и примеры схем включения терморезисторов.
- 6. Варисторы. Материалы, характеристики, применение; пример схемы стабилизации напряжения на варисторе.
- 7. Тензорезисторы. Материалы, характеристики, примеры схем включения. Схема с термокомпенсацией.
- 8. Конденсаторы: физические принципы работы, материалы, классификация.
- 9. Конденсаторы: основные параметры, применение, схема замещения.
- 10. Проходные конденсаторы.
- 11. Конденсаторы с механической перестройкой емкости.
- 12. Конденсаторы с электрически управляемой емкостью: вариконды, варикапы. Материалы, характеристики, применение.
- 13. Пример схем электронной перестройки частоты с помощью варикапа.
- 14. Катушки индуктивности: физические принципы работы, материалы, классификация.
- 15. Катушки индуктивности: основные параметры, применение, схема замещения.
- 16. Пример схемы включения дросселя для подавления синфазных помех.
- 17. Трансформаторы. Принцип работы, классификация.
- 18. Полупроводниковые выпрямительные низкочастотные диоды. Принцип работы, параметры, примеры схем включения.
- 19. Диод Шоттки. Принцип работы, применение.
- 20. Импульсные диоды. Диоды с накоплением заряда. Конструкции, принцип работы, параметры, применение.
- 21. Туннельные диоды. Принцип работы, применение. Генератор колебаний на туннельном диоде.
- 22. Лавинно-пролетные диоды. Принцип работы, применение.
- 23. Стабилитроны. Основные параметры, принцип работы, применение.
- 24. TVS-диоды (защитные диоды). Основные параметры, принцип работы применение.
- 25. Биполярные транзисторы. Конструкции, параметры, применение в различных режимах.
- 26. Полевые транзисторы. Конструкции, параметры, применение.

- 27. Приборы с зарядовой связью (ПЗС). Физические принципы работы, применение. ПЗС с инжекцией и фотогенерацией зарядовых пакетов.
- 28. Работа ПЗС на примере трехтактной схемы сдвигового регистра.
- 29. Фоторезисторы. Физические принципы работы, материалы, характеристики, применение и примеры схем включения.
- 30. Фотодиоды. Материалы, характеристики, применение, примеры схем включения.
- 31. Оптопары. Принцип работы, применение.
- 32. Преобразователи Холла. Физические принципы работы, основные параметры, применение.
- 33. Магниторезисторы. Физические принципы работы, основные параметры, применение.
- 34. Кварцевые резонаторы. Физические принципы работы, конструкция, применение.
- 35. Приборы на поверхностно-акустических волнах (ПАВ). Конструкция, применение на примере фильтра на ПАВ.

Типовые задания для самостоятельной работы

Чтение и анализ научной литературы по темам и проблемам курса.

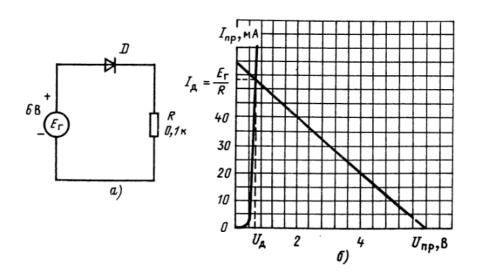
Конспектирование, аннотирование научных публикаций.

Рецензирование учебных пособий, монографий, научных статей, авторефератов.

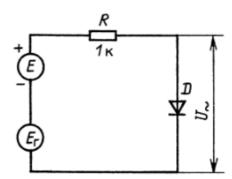
Анализ нормативных документов и научных отчётов.

Реферирование научных источников.

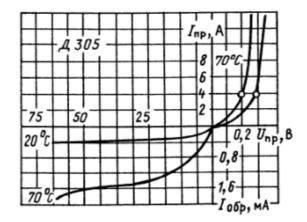
Сравнительный анализ научных публикаций, авторефератов и др.

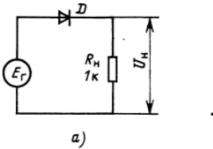

Проектирование методов исследования и исследовательских методик и др.

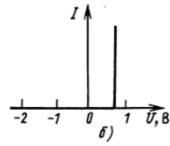
Подготовка выступлений для коллективной дискуссии.


Типовые задания для практических занятий

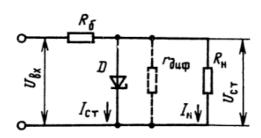
- 1. Определить длину проволоки из нихрома марки X20H80 для намотки проволочного резистора с номиналом 1 кОм , и допустимой мощностью рассеяния 10Вт. Принять параметры материала при 20° C : плотность тока 0,8 А/мм2, удельное сопротивление 1,05 мкОм·м.
- 2. Тороидальный сердечник из пермаллоя с внутренним диаметром 30 мм и наружным диаметром 40 мм имеет обмотку из 200 витков. При пропускании через обмотку тока 0.5 А в сердечнике создается магнитное поле индукцией 1.5 Тл. Определить магнитную проницаемость сердечника.
- 3. Определить удельные диэлектрические потери в плоском конденсаторе, изготовленном из пленки полистирола толщиной 20 мкм, если на конденсатор подано напряжение 2 В частотой 2 МГц (для полистирола).
- 4. При каком максимальном напряжении может работать слюдяной конденсатор емкостью п Φ с площадью обкладок м2, если он должен иметь четырехкратный запас по электрической прочности. Диэлектрическая проницаемость слюды, ее электрическая прочность MB/м. какова толщина h слюдяной пластинки?
- 5. Катушка с ферритовым тороидальным сердечником диаметром 10 мм имеет индуктивность 0.12 Гн и содержит 1000 витков. Определить ток в катушке, при котором магнитная индукция в сердечнике равна 0.1 Тл.


- 6. Обратный ток полупроводникового диода при температуре 300 К равен 1 мкА. Определить сопротивление диода постоянному току и его дифференциальное сопротивление при прямом напряжении 150 мВ.
- 7. Предлагается рассчитать ток и напряжение на диоде. Схема включения и ВАХ диода даны на рисунке.

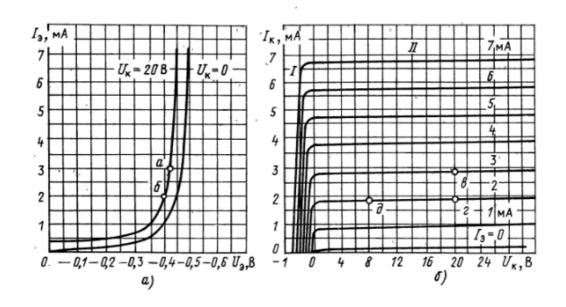

8. Каким будет показание вольтметра переменного напряжения в схеме на рисунке, где E = 10B, $E_r = 50$ мВ? Температура окружающей среды $T = 20^\circ$.



9. Пользуясь вольт-амперной характеристикой диода на рисунке, найти: а) как с ростом температуры изменяются сопротивление постоянному току R_0 и дифференциальное сопротивление диода $r_{\text{диф}}$ при напряжении на диоде +0.2 В; температурный коэффициент по напряжению (ТКН) при токе 4 мА.



10. Идеальный кремниевый диод, BAX которого показана на рисунке (б), влючен в цепь (а),где амплитуда синусоидального напряжения $E_{rm}=10~B,~R=1~\kappa Om$. Требуется найти значение и форму выходного напряжения, а также определить амплитуду выпрямленного тока в цепи.



11. В схеме параметрического стабилизатора (см. рисунок) найти $U_{\text{вх}}$ и R_{6} , если стабилизатор на стабилитроне КС191 должен обеспечивать нестабильность напряжения на выходе 1% при нестабильности на входе 10%. Сопротивление нагрузки $R_{\text{H}} = 1000 \text{ Om}$.

- 12. Для схемы и условий предыдущей задачи определить пределы изменения сопротивления нагрузки.
- 13. Температурный коэффициент стабилизации у стабилитрона 2C156T составляет $0.04\%/C^{\circ}$. Каким будет его напряжение стабилизации при температуре 70° C?
- 14. Входная и выходная ВАХ биполярного транзистора показаны на рисунке. По приведенным графикам определить тип транзистора и основные параметры его Т-образной схемы замещения.

Перечень лабораторных работ и вопросов для контроля

№ работы	Название лабораторной работы и вопросы для контроля	Шифр
1	 Исследование терморезисторов. Что такое терморезистор? Какие физические явления лежат в основе его работы? Какие основные требования предъявляют к материалам, применяемым для изготовления терморезисторов? Объясните особенности температурных зависимостей электропроводности металлов и полупроводников. При каких условиях терморезистор будет обладать отрицательным дифференциальным сопротивлением? Какие режимы работы терморезисторов используются на практике? Перечислить основные параметры терморезисторов? Что они характеризуют? Основные схемы включения и области применения терморезисторов. 	
2	Исследование полупроводниковых диодов. 1. Принцип работы низкочастотных выпрямительных диодов. 2. Схемы включения низкочастотных выпрямительных диодов. 3. Диод Шоттки: принцип работы, основные характеристики, схемы включения. 4. Лавинный диод, стабилитрон. Принцип работы, основные характеристики, области применения. 5. Варикапы: принцип работы, основные характеристики, схемы включения, области применения.	5283
3	Исследование фотодиодов.	5283

	1. Объясните принцип работы фотодиода. 2. Назовите основные параметры и характеристики фотодиода. 3. Нарисуйте и объясните характеристики фотодиода в фотодиодном и фотогальваническом режимах. Каковы конструктивные особенности фотодиода?	
	4. Чем объяснить различие в спектральных характеристиках германиевых и кремниевых фотодиодов?	
	5. Почему увеличение приложенного к фотодиоду обратного напряжения вызывает небольшой рост тока?	
	6. От каких факторов зависит чувствительность по	
	напряжению фотодиода. 7. От каких факторов зависят шумовые характеристики	
	фотодиодов?	
	8. От каких факторов зависит инерционность фотодиода?	
	Каким образом можно её понизить?	
	9. Области применения фотодиодов.	
	10. Основные схемы включения фотодиодов.	
4	Исследование датчика Холла. 1. Что такое эдс Холла, как она возникает?	
	2. От чего зависит величина эдс Холла?	
	3. В чем заключается магниторезистивный эффект?	
	4. Что такое поперечная термоэдс, как она возникает?	5283
	5. Чем определяется величина термоэдс?	, , , ,
	6. Какие дополнительные эффекты возникают в полупроводнике	
	при наличии поперечного магнитного поля?	
	7. Какие факторы определяют погрешность измерения эдс	
	Холла?	