МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Радиотехнических устройств»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по дисциплине

«Устройства приема сигналов в телекоммуникационных системах»

Направление подготовки

11.03.02 Инфокоммуникационные технологии и системы связи

Направленность (профиль) подготовки

«Программно-аппаратная инженерия в телекоммуникациях "интернет вешей"»

Квалификация (степень) выпускника – бакалавр

Форма обучения – очная

Изучение дисциплины «Устройства приема и обработки сигналов» проходит в течение 1 семестра. Основные темы дисциплины осваиваются в ходе аудиторных занятий, однако важная роль отводится и самостоятельной работе студентов.

Самостоятельная работа включает в себя следующие этапы:

- изучение теоретического материала (работа над конспектом лекции);
- самостоятельное изучение дополнительных информационных ресурсов (доработка конспекта лекции);
 - изучение материалов методических указаний (подготовка к лабораторной работе);
 - итоговая аттестация по дисциплине (подготовка к зачету и экзамену).

Работа студента на лекции

Только слушать лекцию и записывать за лектором все, что он говорит, недостаточно. В процессе лекционного занятия студент должен выделять важные моменты, выводы, анализировать основные положения. Прослушанный материал лекции студент должен проработать. От того, насколько эффективно он это сделает, зависит и прочность усвоения знаний, и, соответственно, качество восприятия предстоящей лекции, так как он более целенаправленно будет её слушать. Необходим систематический труд в течение всего семестра.

При написании конспекта лекций следует придерживаться следующих правил и рекомендаций.

- 1. Конспект нужно записывать «своими словами» лишь после того, как излагаемый лектором тезис будет вами дослушан до конца и понят.
- 2. При конспектировании следует отмечать непонятные, на данном этапе, места; записывать те пояснения лектора, которые показались особенно важными.
- 3. При ведении конспекта рекомендуется вести нумерацию разделов, глав, формул (в случае, если лектор не заостряет на этом внимание); это позволит при подготовке к сдаче экзамена не запутаться в структуре лекционного материала.
- 4. Рекомендуется в каждом более или менее законченном пункте выразить свое мнение, комментарий, вывод.

При изучения лекционного материала у студента могут возникнуть вопросы. С ними следует обратиться к преподавателю после лекции.

В заключение следует отметить, что конспект каждый студент записываете лично для себя. Поэтому конспект надо писать так, чтобы им было удобно пользоваться.

Подготовка к лабораторным работам

Главные задачи лабораторного практикума по общей физике таковы:

- 1) экспериментальная проверка физических законов;
- 2) освоение методики измерений и приобретение навыков физического эксперимента;
 - 3) изучение принципов работы физических приборов;
 - 4) приобретения умения обработки результатов эксперимента.

Прежде чем приступить к выполнению эксперимента, студенту необходимо внимательно ознакомится с методическим описанием лабораторной работы. Методические описания содержат:

- 1) название работы, ее цель;
- 2) перечень приборов и принадлежностей;
- 3) элементы теории;
- 4) методику проведения работы;
- 5) порядок выполнения работы;
- 6) обработку результатов измерений;
- 7) контрольные вопросы.

Основная часть времени, выделенная на выполнение лабораторной работы, затрачивается на самостоятельную подготовку. Студент должен понимать, что

методическое описание — это только основа для выполнения работы, что навыки экспериментирования зависят не от качества описания, а от отношения студента к работе и что формально, бездумно проделанные измерения — это потраченное впустую время. Если студент приступает к работе без чёткого представления о теории изучаемого вопроса, он не может понять физическое явление, не сумеет отделить изучаемый эффект от случайных ошибок, а также окажется не в состоянии судить об исправности и неисправности установки. Поэтом этапу выполнения работы предшествует «допуск к работе». Этот этап необходим и по той причине, что в лабораторном практикуме часто изучается темы, еще не прочитанные на лекциях и даже не включенные в лекционный курс. Прежде чем выполнять лабораторную работу студенту необходимо разобраться в устройстве установки или макета, порядке проведения измерений, а также иметь представление о том, какие расчеты необходимо будет провести.

Выполнение каждой из запланированных работ заканчивается предоставлением отчета. Требования к форме и содержанию отчета приведены в каждой из лабораторий. Отчет по лабораторной работе студент должен начать оформлять еще на этапе подготовки к ее выполнению. Допускаясь к лабораторной работе, каждый студент должен представить преподавателю «заготовку» отчета, содержащую: оформленный титульный лист (по образцу, имеющемуся в лаборатории), цель работы, приборы и принадлежности, эскиз экспериментального макета, основные закономерности изучаемого явления и расчетные формулы. Чтобы сэкономить время при выполнении работы, рекомендуется заранее подготовить и таблицу для записи результатов измерений.

После выполнения лабораторной работы необходимо согласовать полученные результаты с преподавателем. После чего нужно провести расчеты и оценку погрешности измерений согласно методическим указаниям.

Важным этапом также является защита лабораторной работы. В процессе защиты студент отвечает на вопросы преподавателя, касающиеся теории изучаемого явления, комментирует полученные в ходе работы результаты. При подготовке к защите лабораторной работы рекомендуется пользоваться дополнительной литературой, список которой приведен в методическом описании, а также конспектом лекций. От того, насколько тщательно студент готовился к защите лабораторной работы во многом зависит и конечный результат его обучения.

Подготовка к сдаче экзамена

Экзамен – форма промежуточной проверки знаний, умений, навыков, степени освоения дисциплины.

Главная задача экзамена состоит в том, чтобы у студента из отдельных сведений и деталей составилось представление об общем содержании соответствующей дисциплины, стала понятной методика предмета, его система. Готовясь к экзамену, студент приводит в систему знания, полученные на лекциях, в лабораториях, на практических занятиях, разбирается в том, что осталось непонятным, и тогда изучаемая им дисциплина может быть воспринята в полном объеме с присущей ей строгостью и логичностью, ее практической направленностью.

Студенту на экзамене нужно не только знать сведения из тех или иных разделов физики, но и владеть ими практически: видеть физическую задачу в другой науке, уметь пользоваться физическими методами исследования в других естественных и технических науках, опираясь на методологию физики, получать новые знания и т. д.

Экзамены дают возможность также выявить, умеют ли студенты использовать теоретические знания при решении физических задач.

На экзамене оцениваются:

- 1) понимание и степень усвоения теории;
- 2) методическая подготовка;
- 3) знание фактического материала;
- 4) знакомство с основной и дополнительно литературой, а также с современными

публикациями по данному курсу;

- 5) умение приложить теорию к практике, решать физические задачи, правильно проводить расчеты и т. д.;
 - 6) знакомство с историей науки;
 - 7) логика, структура и стиль ответа, умение защищать выдвигаемые положения.

Но значение экзаменов не ограничивается проверкой знаний. Являясь естественным завершением работы студента, они способствуют обобщению и закреплению знаний и умений, приведению их в строгую систему, а также устранению возникших в процессе занятий пробелов. И еще одно значение экзаменов. Они проводятся по курсам, в которых преобладает теоретический материал, имеющий большое значение для подготовки будущего специалиста.

Студенту важно понять, что самостоятельность предполагает напряженную умственную работу. Невозможно предложить алгоритм, с помощью которого преподаватель сможет научить любого студента успешно осваивать науки, в частности, физику. Нужно, чтобы студент ставил перед собой вопросы по поводу изучаемого материала, которые можно разбить на две группы:

- 1) вопросы, необходимые для осмысления материала в целом, для понимания принципиальных физических положений;
 - 2) текущие вопросы, которые возникают при детальном разборе материала.

Студент должен их ставить перед собой при подготовке к экзамену, и тогда на подобные вопросы со стороны преподавателя ему несложно будет ответить.

Подготовка к экзамену не должна ограничиваться беглым чтением лекционных записей, даже, если они выполнены подробно и аккуратно. Механического заучивания также следует избегать, поскольку его нельзя назвать учением уже потому, что оно создает внутреннее сопротивление какому бы то ни было запоминанию и, конечно уменьшает память. Более надежный и целесообразный путь — это тщательная систематизация материала при вдумчивом повторении, запоминании формулировок, установлении внутрипредметных связей, увязке различных тем и разделов, закреплении путем решения задач.

Перед экзаменом назначается консультация. Цель ее — дать ответы на вопросы, возникшие в ходе самостоятельной подготовки. Здесь студент имеет полную возможность получить ответ на все неясные ему вопросы. А для этого он должен проработать до консультации весь курс. Кроме того, преподаватель будет отвечать на вопросы других студентов, что будет для вас повторением и закреплением знаний. И еще очень важное обстоятельство: лектор на консультации, как правило, обращает внимание на те разделы, по которым на предыдущих экзаменах ответы были неудовлетворительными, а также фиксирует внимание на наиболее трудных разделах курса.

На непосредственную подготовку к экзамену обычно дается три - пять дней. Этого времени достаточно только для углубления, расширения и систематизации знаний, на устранение пробелов в знании отдельных вопросов, для определения объема ответов на каждый из вопросов программы.

Планируйте подготовку с точностью до часа, учитывая сразу несколько факторов: неоднородность материала и этапов его проработки (например, на первоначальное изучение у вас уходит больше времени, чем на повторение), свои индивидуальные способности, ритмы деятельности и привычки организма. Чрезмерная физическая нагрузка наряду с общим утомлением приведет к снижению тонуса интеллектуальной деятельности. Рекомендуется делать перерывы в занятиях через каждые 50-60 минут на 10 минут. После 3-4 часов умственного труда следует сделать часовой перерыв. Для сокращения времени на включение в работу целесообразно рабочие периоды делать более длительными, разделяя весь день примерно на три части – с утра до обеда, с обеда до ужина и с ужина до сна. Каждый рабочий период дня должен заканчиваться отдыхом в виде прогулки, неутомительного физического труда и т. п. Время и формы отдыха также

поддаются планированию. Работая в сессионном режиме, студент имеет возможность увеличить время занятий с десяти (как требовалось в семестре) до тринадцати часов в сутки.

Подготовку к экзаменам следует начинать с общего планирования своей деятельности в сессию. С определения объема материала, подлежащего проработке. Необходимо внимательно сверить свои конспекты с программой, чтобы убедиться, все ли разделы отражены в лекциях. Отсутствующие темы законспектировать по учебнику. Более подробное планирование на ближайшие дни будет первым этапом подготовки к очередному экзамену. Второй этап предусматривает системное изучение материала по данному предмету с обязательной записью всех выкладок, выводов, формул. На третьем этапе - этапе закрепления — полезно чередовать углубленное повторение особенно сложных вопросов с беглым повторением всего материала.

Составил доцент кафедры РТУ к.т.н.

А.Ю. Паршин

Оператор ЭДО ООО "Компания "Тензор"

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СОГЛАСОВАНО **ФГБОУ ВО "РГРТУ", РГРТУ,** Дмитриев Владимир Тимурович, Заведующий кафедрой РУС

30.06.25 17:45 (MSK) Простая подпись