ПРИЛОЖЕНИЕ 1

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА

Кафедра радиотехнических систем

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине (модулю)

Б1.В.ДВ.02.02 «Проектирование РЭС на кристалле»

Направление подготовки

11.04.01 «Радиотехника»

Направленность (профиль) подготовки Радиотехнические системы локации, навигации и телевидения»

> Уровень подготовки магистратура

Программа подготовки академическая магистратура

Квалификация выпускника – магистр

Формы обучения – очная

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях. При оценивании результатов освоения практических занятий применяется шкала оценки «зачтено — не зачтено». Количество практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением зачета.

Форма проведения зачета – письменный ответ по утвержденным билетам, учебной сформулированным учетом содержания дисциплины. экзаменационный билет включается один теоретический вопрос. После письменной работы обучаемого производится выполнения оценка обучаемым проводится беседа преподавателем ДЛЯ *<u>VТОЧНЕНИЯ</u>* экзаменационной оценки.

Паспорт оценочных материалов по дисциплине

№ п/п	Контролируемые разделы (темы) дисциплины	Код контролируемой компетенции (или её части)	Вид, метод, форма оценочного мероприятия
1.	Основные сведения о программируемой логике и языке VHDL		зачет
2.	Конвейерная обработка и параллельные операторы		зачет
3.	Системы на кристалле на основе процессора Nios II. Часть 1.	ПК-1.2	зачет
4.	Системы на кристалле на основе процессора Nios II. Часть 2.	11K-1.2	зачет
5.	Системы на кристалле на основе процессора Nios II. Часть 3.		зачет
6.	Системы на кристалле на основе процессора Nios II. Часть 4.		зачет

Критерии оценивания уровня сформированности компетенций в процессе выполнения практических занятий:

- 41%-60% правильных ответов соответствует пороговому уровню сформированности компетенции на данном этапе ее формирования;
- 61%-80% правильных ответов соответствует продвинутому уровню сформированности компетенции на данном этапе ее формирования;
- 81%-100% правильных ответов соответствует эталонному уровню сформированности компетенции на данном этапе ее формирования.

Сформированность уровня компетенций не ниже порогового является основанием для допуска обучающегося к промежуточной аттестации по данной дисциплине.

Критерии оценивания промежуточной аттестации представлены в таблице 1.

Таблица 1 - Критерии оценивания промежуточной аттестации (лабораторные и практические занятия, экзамен)

практические занятия, экзамен)			
Шкала оценивания Критерии оценивания			
«зачтено»	студент должен: продемонстрировать общее знание		
	изучаемого материала; знать основную рекомендуемую		
	программой дисциплины учебную литературу; уметь		
	строить ответ в соответствии со структурой излагаемого		
	вопроса; показать общее владение понятийным		
	аппаратом дисциплины; уметь устранить допущенные		
	погрешности в ответе на теоретические вопросы и/или		
	при выполнении практических заданий под руководством		
	преподавателя, либо (при неправильном выполнении		
	практического задания) по указанию преподавателя		
	выполнить другие практические задания того же раздела		
	дисциплины.		
«не зачтено»	ставится в случае: незнания значительной части		
	программного материала; не владения понятийным		
	аппаратом дисциплины; существенных ошибок при		
	изложении учебного материала; неумения строить ответ в		
	соответствии со структурой излагаемого вопроса;		
	неумения делать выводы по излагаемому материалу.		
	Оценка «не зачтено» также ставится студентам, которые		
	не выполнили и защитили лабораторные работы и		
	практические занятия, предусмотренные рабочей		
	программой.		
	Оценка «не зачтено» также ставится студентам, которые		
	в ходе зачета списывали ответы на вопросы со шпаргалок		
	или с применением технических устройств.		

Контрольные вопросы для защиты практических занятий

- 1. Каковы отличительные особенности ПЛИС типа CPLD?
- 2. Каковы отличительные особенности ПЛИС типа FPGA?
- 3. Объясните назначение сигналов в проекте на языке описания аппаратуры VHDL.
- 4. Объясните назначение переменных в проекте на языке описания аппаратуры VHDL.
- 5. Объясните назначение компонентов в проекте на языке описания аппаратуры VHDL.
- 6. Какие элементы объявляются в декларативной части архитектуры программы?
- 7. Какие элементы объявляются в декларативной части процесса?
- 8. Можно ли объявить внутри процесса сигнал? Почему?

- 9. Можно ли объявить внутри процесса другой процесс? Почему?
- 10. Перечислите основные свойства процессов в VHDL.
- 11.Пояснить преимущество представления дробных чисел в ПЛИС в формате с фиксированной точкой.
- 12. Что в системах на кристалле понимается под IP-ядром?
- 13. Назовите основную шину процессора Nios II.
- 14. Принципы адресации с микросхемах ОЗУ.
- 15. Принцип работы ОЗУ типа SRAM.
- 16.Принцип работы ОЗУ типа SDRAM.
- 17. Приоритет прерываний.

Вопросы к зачету

- 1. Параллельные операторы в ПЛИС. Процессы.
- 2. Понятие конвейерной обработки в ПЛИС. Повышение быстродействия при конвейерной обработке
- 3. Структурный стиль программирования. Компоненты. Параметрические компоненты с настроечной константой.
- 4. Программирование ПЛИС. Интерфейс JTAG. Ячейки граничного сканирования.
- 5. Архитектура процессоров. Системы на кристалле. Встроенный процессор Nios II.
- 6. ІР-ядра. Шина Avalon. Слой абстрагирования.
- 7. Принципы адресации с микросхемах ОЗУ.
- 8. Принцип работы ОЗУ типа SRAM.
- 9. Принцип работы ОЗУ типа SDRAM.
- 10. Прерывания в системах на кристалле.

Составил

к.т.н., доцент кафедры РТС

/ И.С. Холопов /