МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В Ф. УТКИНА»

Кафедра «Автоматизация информационных и технологических процессов»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ по дисциплине

Моделирование и процессов систем

Направление подготовки 15.04.04 «Автоматизация технологических процессов и производств»

Направленность (профиль) подготовки Цифровые системы в автоматизации предприятия

> Уровень подготовки Магистратура

Квалификация выпускника – магистр

Форма обучения – очная

Рязань 2025

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных, общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на лабораторных работах и практических занятиях. При оценивании результатов освоения лабораторных работ и практических занятий применяется шкала оценки «зачтено — не зачтено». Количество лабораторных работ и практических занятий и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой.

Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением экзамена.

Форма проведения экзамена — устный ответ по утвержденным вопросам, сформулированным с учетом содержания учебной дисциплины. После подготовки обучаемого к ответу, проводится теоретическая беседа преподавателя с обучаемым для уточнения экзаменационной оценки.

Паспорт фонда оценочных средств по дисциплине

№	Контролируемые разделы (темы)	Код контролируемой	Вид, метод, форма		
п/п	дисциплины	компетенции (или её	оценочного мероприятия		
		части)			
1	Цели и задачи статистического анализа данных.	УК-2.1, ОПК-5.1, ОПК-9.1, ОПК-9.2, ОПК-11.1, ОПК- 11.2, ОПК-12.1, ПК-3.1	экзамен		
2	Статистическая обработка результатов эксперимента.	УК-2.1, ОПК-5.1, ОПК-9.1, ОПК-9.2, ОПК-11.1, ОПК- 11.2, ОПК-12.1, ПК-3.1	экзамен		
3	Системы линейных одновременных уравнений.	УК-2.1, ОПК-5.1, ОПК-9.1, ОПК-9.2, ОПК-11.1, ОПК- 11.2, ОПК-12.1, ПК-3.1	экзамен		
4	Оценивание параметров систем одновременных уравнений.	УК-2.1, ОПК-5.1, ОПК-9.1, ОПК-9.2, ОПК-11.1, ОПК- 11.2, ОПК-12.1, ПК-3.1	экзамен		

Критерии оценивания компетенций (результатов)

- 1). Уровень усвоения материала, предусмотренного программой.
- 2). Умение анализировать материал, устанавливать причинно-следственные связи.
- 3). Ответы на вопросы: полнота, аргументированность, убежденность, умение
- 4). Качество ответа (его общая композиция, логичность, убежденность, общая эрудиция)
- 5). Использование дополнительной литературы при подготовке ответов.

Шкала оценки сформированности компетенций

В процессе оценки сформированности знаний, умений и навыков обучающегося по дисциплине, производимой на этапе промежуточной аттестации в форме экзамена, используется следующая оценочная шкала:

«Отлично» заслуживает обучающийся, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется обучающимся, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

«Хорошо» заслуживает обучающийся, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется обучающимся, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

«Удовлетворительно» заслуживает обучающийся, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной программой. Как правило, оценка «удовлетворительно» выставляется обучающимся, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

«Неудовлетворительно» выставляется обучающемуся, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится обучающимся, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Типовые контрольные задания или иные материалы

Вопросы к лабораторным работам и практическим занятиям по дисциплине

- 1) Какие объекты относятся к классу стохастических?
- 2) Как классифицируются переменные в статистических исследованиях?
- 3) Что такое односторонняя стохастическая зависимость?
- 4) Какие модели называются регрессионными?
- 5) По каким признакам классифицируются регрессионные модели?
- 6) Что такое простая линейная регрессия?
- 7) При каких условиях регрессионный анализ называется классическим?
- 8) Какой критерий обычно используется для оценивания параметров линейной регрессии?

- 9) Что такое метод наименьших квадратов?
- 10) Как формируется система нормальных уравнений?
- 11) Какая регрессионная модель называется множественной?
- 12) Что такое вектор-функция регрессоров модели?
- 13) Как формируется матричная форма регрессионной модели?
- 14) Как оцениваются параметры регрессии в матричной форме?
- 15) Какие оценки регрессионных коэффициентов являются несмещенными?
- 16) Какие оценки регрессионных коэффициентов являются эффективными?
- 17) Какие оценки регрессионных коэффициентов являются состоятельными?
- 18) Как оценивается точность предсказанного значения функции отклика?
- 19) Как оценивается дисперсия случайной ошибки?
- 20) Как получаются интервальные оценки параметров регрессии?
- 21) Как получаются интервальные оценки предсказанного значения отклика?
- 22) Какая процедура используется для проверки значимости коэффициентов модели?
- 23) Какая процедура используется для проверки адекватности регрессионной модели?
- 24) Что такое коэффициент множественной детерминации?
- 25) Какие ошибки могут быть допущены при спецификации регрессионной модели?
- 26) Какая модель называется обобщенной линейной моделью множественной регрессии?
- 27) Оценивание параметров обобщенной линейной модели множественной регрессии.
- 28) Какие регрессионные модели относятся к классу нелинейны?
- 29) Какие статистические зависимости относятся к классу логит-моделей и пробит-моделей?
- 30) Понятие систем одновременных регрессионных уравнений.
- 31) Какие существуют формы моделей систем одновременных уравнений?
- 32) При каких условиях система одновременных уравнений является рекурсивной?
- 33) Каким методом могут оцениваться параметры рекурсивных систем?
- 34) В чем заключаются условия идентифицируемости систем одновременных уравнений?
- 35) В чем заключаются особенности применения метода наименьших квадратов для оценки параметров систем одновременных уравнений?
- 36) Двухшаговый метод наименьших квадратов и его использование для оценивания параметров систем одновременных уравнений.
- 37) Трехшаговый метод наименьших квадратов и его использование для оценивания параметров систем одновременных уравнений.

Типовые задания для самостоятельной работы

Общая цель самостоятельной работы — углубленное изучение наиболее важных разделов изучаемой дисциплины. В процессе самостоятельной работы у студентов формируется представление о современном состоянии прикладной статистики, тенденциях ее развития, вырабатываются практические навыки решения задач обработки экспериментальностатистических данных.

Для выполнения заданий самостоятельной работы обучающихся предлагается использовать представленные в таблице динамические ряды данных.

	Ряд1	Ряд2	Ряд3	Ряд4	Ряд5	Ряд6	Ряд7	Ряд8	Ряд9	Ряд10
1	133	105	157	185	148	108	194	134	180	199
2	260	225	128	134	197	133	370	370	313	284
3	201	212	173	234	165	226	317	318	289	210

4	324	343	220	213	340	167	459	591	444	417
5	227	262	236	271	298	325	334	332	300	332
6	459	426	215	355	435	226	378	682	409	389
7	320	354	223	223	196	169	527	527	427	472
8	483	524	254	304	348	328	358	720	586	616
9	560	620	278	327	319	211	446	700	563	517
10	490	470	226	486	586	486	404	920	754	812
11	615	675	445	417	481	390	579	953	560	597
12	498	498	368	658	785	330	498	754	640	706
13	520	809	515	529	584	475	640	849	910	746
14	753	753	558	685	721	721	494	710	715	665
15	538	820	497	748	839	687	742	885	829	899
15	900	795	561	542	587	851	490	573	573	529
17	510	617	588	653	680	680	825	868	750	710
18	931	829	566	800	764	873	779	874	720	910
19	824	743	629	629	587	796	588	712	597	630
20	990	810	528	770	635	937	828	754	706	808

Для приведенных в таблице данных измерений некоторого технико-экономического показателя, отражающего эффективность работы предприятия, получить оценки коэффициентов линейной регрессионной модели $\mathbf{y} = \mathbf{b_0} + \mathbf{b_1x}$, квадратичной модели $\mathbf{y} = \mathbf{b_0} + \mathbf{b_1x} + \mathbf{b_2x^2}$ и кубической модели $\mathbf{y} = \mathbf{b_0} + \mathbf{b_1x} + \mathbf{b_2x^2} + \mathbf{b_3x^3}$ представляющих зависимость исследуемого показателя от момента наблюдения. По результатам оценивания получить оценку дисперсии случайной помехи, а также оценки дисперсий и ковариаций регрессионных коэффициентов. Выполнить проверку значимости коэффициентов и адекватности модели. Получить интервальные оценки коэффициентов модели и предсказанного значения функции отклика.

Вопросы к экзамену по дисциплине

- 1. Основные задачи регрессионного анализа.
- 2. Классическая линейная модель множественной регрессии (КЛММР).
- 3. Оценка вектора коэффициентов уравнения регрессии и остаточной дисперсии с помощью метода наименьших квадратов (МНК).
 - 4. Проверка адекватности уравнения регрессии.
 - 5. Проверка значимости коэффициентов регрессии.
 - 6. Интервальное оценивание коэффициентов регрессии.
 - 7. Обобщенная линейная модель множественной регрессии (ОЛММР)
 - 8. Обобщенный метод наименьших квадратов (ОМНК).
 - 9. Использование фиктивных переменных в регрессионных моделях
 - 10. Интерпретация коэффициентов при фиктивных переменных.
 - 11. Виды нелинейных регрессионных моделей.
 - 12. Способы приведения нелинейных регрессионных моделей к линейному виду.
 - 13. Модели бинарного выбора.
 - 14. Методы оценки параметров в логит-моделях.
 - 15. Методы оценки параметров в пробит-моделях.
 - 16. Системы одновременных регрессионных уравнений.
 - 17. Классификация переменных в системах одновременных уравнений.
 - 18. Структурная форма модели систем одновременных уравнений.
 - 19. Приведенная форма модели систем одновременных уравнений.
 - 20. Рекурсивные системы одновременных уравнений.
 - 21. Применение МНК для оценки параметров систем одновременных уравнений.
 - 22. Косвенный метод наименьших квадратов.
 - 23. Двухшаговый метод наименьших квадратов.

ЗАВЕДУЮЩИМ

ВЫПУСКАЮЩЕЙ КАФЕДРЫ

24. Оценивание параметров рекурсивных систем одновременных уравнений.

Владимирович, Заведующий кафедрой АИТП