МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

КАФЕДРА МИКРО- И НАНОЭЛЕКТРОНИКИ

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

Б1.О.03 «Методы анализа наносистем»

Направление подготовки 11.04.04 «Электроника и наноэлектроника»

Квалификация (степень) выпускника – магистр Форма обучения – очная, очно-заочная **Оценочные материалы** — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной профессиональной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной профессиональной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общепрофессиональных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

- УК-3 способен организовывать и руководить работой команды, вырабатывая командную стратегию для достижения поставленной цели;
- ОПК-2 способен применять современные методы исследования, представлять и аргументировано защищать результаты выполненной работы;
- ОПК-3 способен приобретать и использовать новую информацию в своей предметной области, предлагать новые идеи и подходы к решению инженерных задач.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретенных обучающимися в ходе выполнения индивидуальных заданий на практических занятиях и лабораторных работах. При оценивании результатов освоения практических занятий и лабораторных работ применяется шкала оценки «зачтено — не зачтено». Количество лабораторных и практических работ и их тематика определена рабочей программой дисциплины, утвержденной заведующим кафедрой. Результат выполнения каждого индивидуального задания должен соответствовать всем критериям оценки в соответствии с компетенциями, установленными для заданного раздела дисциплины.

Промежуточный контроль по дисциплине осуществляется проведением экзамена. Форма проведения экзамена — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается три теоретических вопроса. В процессе подготовки к устному ответу экзаменуемый должен составить в письменном виде план ответа, включающий в себя определения, выводы формул, рисунки, схемы и т.п.

Паспорт фонда оценочных средств по дисциплине (модулю)

№	Контролируемые разделы (темы)	Код контролируемой	Вид, метод, форма
П	дисциплины	компетенции	оценочного
/		(или её части)	мероприятия
П			
1	2	3	4
1	Введение. Уникальные свойства микро- и наноструктур. Особенности физических взаимодействий на наноразмерных масштабах.	УК-3; ОПК-2; ОПК-3	экзамен
2	Методы оптической микроскопии	УК-3; ОПК-2; ОПК-3	практические занятия, лабораторные работы, экзамен

3	Методы электронной и ионной	УК-3; ОПК-2; ОПК-3	практические
	микроскопии		занятия,
			лабораторные
			работы, экзамен
4	Методы сканирующей зондовой	УК-3; ОПК-2; ОПК-3	практические
	микроскопии		занятия,
			лабораторные
			работы, экзамен
5	Методы спектроскопии	УК-3; ОПК-2; ОПК-3	практические
			занятия, экзамен
6	Методы структурного анализа	УК-3; ОПК-2; ОПК-3	практические
			занятия,
			лабораторные
			работы, экзамен
7	Методы определения элементного	УК-3; ОПК-2; ОПК-3	практические
	состава		занятия, экзамен

Формы текущего контроля

Текущий контроль по дисциплине проводится в виде тестовых опросов по отдельным темам дисциплины, проверки заданий, выполняемых самостоятельно, на лабораторных занятиях, а также экспресс — опросов и заданий по лекционным материалам и лабораторным работам. Учебные пособия, рекомендуемые для самостоятельной работы обучающихся по дисциплине, содержат необходимый теоретический материал и вопросы по каждому из разделов дисциплины. Результаты ответов на вопросы тестовых заданий контролируются преподавателем.

Формы промежуточного контроля

Формой промежуточного контроля по дисциплине является экзамен. К экзамену допускаются обучающиеся, полностью выполнившие все виды учебной работы, предусмотренные учебным планом и настоящей программой. Форма проведения экзамена — устный ответ, по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины.

Критерии оценки компетенций обучающихся и шкалы оценивания

Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах лабораторных занятий, а также самостоятельной работы оценивается по критериям шкалы оценок: «зачтено» — «не зачтено». Освоение материала дисциплины и контролируемых компетенций обучающегося служит основанием для допуска обучающегося к этапу промежуточной аттестации — экзамену.

Целью проведения промежуточной аттестации (экзамена) является проверка общепрофессиональных и профессиональных компетенций, приобретенных студентом при изучении дисциплины «Методы анализа наносистем».

Уровень теоретической подготовки определяется составом приобретенных компетенций, усвоенных им теоретических знаний и методов, а также умением осознанно, эффективно применять их при решении задач диагностики и анализа структуры, химического состава, оптических и электрофизических свойств поверхности твердого тела и микро- и наносистем на наноразмерном уровне.

Экзамен организуется и осуществляется, как правило, в форме собеседования. Средством, определяющим содержание собеседования студента с экзаменатором, являются экзаменационный билет, содержание которого определяется ОПОП и Рабочей программой. Экзаменационный билет включает в себя, как правило, три вопроса, один из которых относятся к теоретическим разделам дисциплины, второй — к методам визуализации

наноразмерных объектов, а третий - к спектроскопическим методам анализа структурного, элементного состава, электрофизических и оптических свойств наноструктурированных материалов и твердотельных микро- и наноструктур.

Оценке на заключительной стадии экзамена подвергаются устные ответы экзаменующегося на вопросы экзаменационного билета, а также дополнительные вопросы экзаменатора.

Применяется четырехбальная шкала оценок: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно», что соответствует шкале «компетенции студента полностью соответствуют требованиям $\Phi \Gamma OC$ BO», «компетенции студента в основном соответствуют требованиям $\Phi \Gamma OC$ BO», «компетенции студента в основном соответствуют требованиям $\Phi \Gamma OC$ BO», «компетенции студента не соответствуют требованиям $\Phi \Gamma OC$ BO».

К оценке уровня знаний и практических умений и навыков рекомендуется предъявлять следующие общие требования.

«Отлично»:

глубокие и твердые знания программного материала программы дисциплины, понимание сущности и взаимосвязи рассматриваемых явлений (процессов); полные, четкие, логически последовательные, правильные ответы на поставленные вопросы; умение выделять главное и делать выводы.

«Хорошо»:

достаточно полные и твёрдые знания программного материала дисциплины, правильное понимание сущности и взаимосвязи рассматриваемых явлений (процессов); последовательные, правильные, конкретные, без существенных неточностей ответы на поставленные вопросы, свободное устранение замечаний о недостаточно полном освещении отдельных положений при постановке дополнительных вопросов.

«Удовлетворительно»:

знание основного программного материала дисциплины, понимание сущности и взаимосвязи основных рассматриваемых явлений (процессов); понимание сущности обсуждаемых вопросов, правильные, без грубых ошибок ответы на поставленные вопросы, несущественные ошибки в ответах на дополнительные вопросы.

«Неудовлетворительно»:

отсутствие знаний значительной части программного материала дисциплины; неправильный ответ хотя бы на один из вопросов, существенные и грубые ошибки в ответах на дополнительные вопросы, недопонимание сущности излагаемых вопросов, неумение применять теоретические знания при решении практических задач, отсутствие навыков в обосновании выдвигаемых предложений и принимаемых решений.

При трех вопросах в билете общая оценка выставляется следующим образом:

- «отлично», если все оценки «отлично» или одна из них «хорошо»;
- «хорошо», если не более одной оценки «удовлетворительно»;
- «удовлетворительно», если две и более оценок «удовлетворительно»;
- «неудовлетворительно», если одна оценка «неудовлетворительно», а остальные не выше чем «удовлетворительно» или две оценки «неудовлетворительно».

Типовые контрольные темы и вопросы по дисциплине «Методы анализа наносистем»

Вопросы к лабораторным занятиям по дисциплине

	Лабораторная	работа	№	1	«Изучение	устройства	И	принципов	работы
ска	нирующего зон	дового ми	кросі	соп	a NanoEduca	tor»			
1	Назовите основ	вные компо	онент	ы С	ЗМ и их назн	ачение.			
2	Назовите виды сенсоров и принципы их действия.								
3	Объясните	тонятие	пьез	эле	ектрического	эффекта	И	принцип	действия
	пьезоэлектриче	еского дви	гателя	я. О	пишите разли	ичные констру	кци	и сканеров.	

4	Опишите общую конструкцию прибора NanoEducator.					
5	Объясните конструкцию зондового датчика прибора NanoEducator и принцип его действия.					
6	Опишите механизм подвода зонда к образцу в приборе NanoEducator.					
7	Объясните принцип сканирования и работы системы обратной связи. Расскажите о					
	критериях выбора параметров сканирования.					
	Лабораторная работа № 2 «Изготовление зондов для сканирующего зондового					
мик	гроскопа NanoEducator»					
1	Зонды для СТМ.					
2	Способы изготовления зондов для СТМ.					
3	Зонды для АСМ.					
4	Способы изготовления зондов для АСМ.					
5	Расскажите о методике изготовления зонда для C3M NanoEducator.					
	Лабораторная работа № 3 «Получение изображения поверхности СЗМ					
Nan	oEducator в режиме атомно-силовой микроскопии»					
1	Назовите основные компоненты СЗМ.					
2	Объясните понятие пьезоэлектрического эффекта и принцип действия					
	пьезоэлектрического двигателя.					
3	Опишите различные конструкции сканеров.					
4	Объясните конструкцию зондового датчика силового взаимодействия прибора					
	NanoEducator и принцип его действия.					
5	Опишите механизм подвода зонда к образцу в приборе NanoEducator.					
6	Поясните параметры, определяющие силу взаимодействия зонда с образцом.					
7	Объясните принцип сканирования и работы системы обратной связи.					
8	Расскажите о критериях выбора параметров сканирования.					
	Лабораторная работа № 4 «Проведение сканирующей зондовой литографии на					
ска	нирующем зондовом микроскопе NanoEducator»					
1	Сканирующий зондовый микроскоп как инструмент для считывания и записи					
	информации. Расскажите о физических основах зондовой нанотехнологии.					
2	Что такое сканирующая зондовая литография? Расскажите об основных ее видах.					
3	Расскажите об особенностях динамической силовой литографии на приборе NanoEduca-					
	tor.					
4	Назовите критерии выбора образцов для проведения динамической силовой литографии					
	Лабораторная работа № 5 «Обработка и количественный анализ СЗМ-					
изо(бражений»					
1	Какие типы искажений характерны для СЗМ-изображений?					
2	По каким причинам возникают искажения СЗМ-изображений?					
3	Каковы основные методы фильтрации СЗМ изображений?					
4	Каким образом проводится медианная фильтрация?					
5	Какими способами удаляют искажения, связанные с неидеальностью сканера?					
6	Назовите некоторые методы определения количественных характеристик изображений.					
7	Что такое гистограмма высот и для чего ее используют?					
8	Для каких изображений следует воспользоваться частотным представлением?					
9	Какую информацию об изображении можно получить по его Фурье-образу?					

Примерные темы практических занятий

No	Наименование темы				
1	Пределы разрешения оптических и электронных методов микроскопии. Аберрации.				
	Определение толщины пленок методом эллипсометрии				
2	Особенности взаимодействия электронного и ионного луча с веществом				
3	Изучение устройства и принципов работы сканирующего зондового микроскопа				

4	Определение средних размеров наночастиц
5	Определение элементного состава материалов и веществ

Вопросы к экзамену

Вопросы к экзамену	
Тема 1 «Введение. Уникальные свойства микро- и наноструктур. Особеннос физических взаимодействий на наноразмерных масштабах»	ГИ
1.1 Роль микро- нанотехнологий в создании современных концепций исследования микр	
и наносистем. Уникальные свойства микро- и наноструктур.	
1.2 Основные понятия и особенности применения методов исследования для анали наносистем. Классификация методов анализа микро- и наносистем.	іза
1.3 Особенности физических взаимодействий на наноразмерных масштабах. Гравитация поверхностное натяжение.	ΙИ
1.4 Особенности физических взаимодействий на наноразмерных масштаба Электростатическое взаимодействие.	ıx.
1.5 Особенности физических взаимодействий на наноразмерных масштабах. Сила трени	Я.
1.6 Особенности физических взаимодействий на наноразмерных масштаба Механические колебания и резонансы.	
1.7 Особенности физических взаимодействий на наноразмерных масштабах. Особеннос оптических свойств наноматериалов.	ти
1.8 Особенности физических взаимодействий на наноразмерных масштабах. Магнитн свойства наночастиц.	ые
Тема 2 «Методы оптической микроскопии»	
2.1 Основные характеристики оптических систем. Схема двухлинзового оптическом микроскопа.	ГО
2.2 Основные характеристики оптических систем. Разрешающая способность оптическ системы.	ой
2.3 Основные характеристики оптических систем. Аберрации оптических систем.	
2.4 Основные характеристики оптических систем. Методы наблюдения.	
2.5 Основные характеристики оптических систем. Методы наблюдения, расширяющ возможности оптической микроскопии: изображение в поляризованных луча амплитудный и фазовый контрасты.	
2.6 Повышение разрешающей способности оптической микроскопии. Иммерсия.	
2.7 Оптическая микроскопия высокого разрешения. Ультрафиолетовая и рентгеновск микроскопия.	ая
2.8 Оптическая микроскопия высокого разрешения. Флуоресцентная микроскопия.	
2.9 Оптическая микроскопия высокого разрешения. Конфокальная микроскопия.	
2.10 Оптическая микроскопия высокого разрешения. Интерферометрия в белом свете.	
2.11 Оптическая микроскопия высокого разрешения. Микроскопия с насыщени люминесценции (STED).	ем
2.12 Оптическая микроскопия высокого разрешения. Ближнепольная оптическ микроскопия.	ая
Тема 3 «Методы электронной и ионной микроскопии»	
3.1 Теоретические основы электронной микроскопии. Взаимодействие электронного лу с веществом.	ча
3.2 Теоретические основы электронной микроскопии. Предел разрешения электронном микроскопа.	ιгο
3.3 Теоретические основы электронной микроскопии. Аберация электромагнитных линз	
3.4 Основные элементы электронного микроскопа: электронная пушка, магнитные линзотклоняющие катушки, диафрагма, детектор.	
3.5 Просвечивающий электронный микроскоп. Оптическая схема.	
3.6 Просвечивающий электронный микроскоп. Взаимодействие электронного луча	c

	веществом.					
3.7	Просвечивающий электронный микроскоп. Пробоподготовка.					
3.8	Растровая электронная микроскопия. Взаимодействие электронного луча с веществом					
3.9	Растровая электронная микроскопия. Область взаимодействия электронов с					
	веществом: влияние атомного номера, зависимость от энергии пучка.					
3.10	Растровая электронная микроскопия. Схема растрового электронного микроскопа					
3.11	Растровая электронная микроскопия. Электронная пушка.					
3.12	Растровая электронная микроскопия. Электромагнитные линзы.					
3.13	Растровая электронная микроскопия. Диафрагмы электронно-оптической системы.					
3.14	Растровая электронная микроскопия. Детекторы для регистрации сигналов.					
3.15	Растровая электронная микроскопия. Понятие контраста. Топографический и					
0.10	композиционный (контраст от состава) контрасты.					
3.16	Ионная микроскопия. Разрешение и принцип работы ионно-полевого микроскопа.					
3.17	Ионная микроскопия. Фокусированные ионные пучки.					
	Тема 4 «Методы сканирующей зондовой микроскопии»					
4.1	Сканирующая зондовая микроскопия. Возможности и краткая характеристика					
	основных методов СЗМ.					
4.2	Сканирующая зондовая микроскопия. Сканирующие элементы (сканеры) зондовых					
	микроскопов.					
4.3	Сканирующая зондовая микроскопия. Защита зондовых микроскопов от внешних					
	воздействий.					
4.4	Сканирующая зондовая микроскопия. Формирование и обработка СЗМ изображений.					
4.5	Сканирующая туннельная микроскопия. Физические основы метода					
4.6	Сканирующая туннельная микроскопия. Режимы работы (постоянного туннельного					
	тока и постоянного расстояния)					
4.7	Сканирующая туннельная микроскопия. Базовые блоки сканирующего туннельного					
	микроскопа.					
4.8	Сканирующая туннельная микроскопия. Организация обратной связи по туннельному					
	току. Система управления СТМ.					
4.9	Атомно-силовая микроскопия. Теоретические основы метода. Взаимодействие зонда					
1.10	АСМ с поверхностью.					
4.10	Атомно-силовая микроскопия. Система регистрации положения зонда и обратной					
4.4.4	связи.					
4.11	Атомно-силовая микроскопия. Зондовые датчики атомно-силовых микроскопов,					
4.10	кантилеверы.					
4.12	Атомно-силовая микроскопия. Режимы работы.					
4.13	Атомно-силовая микроскопия. Контактная АСМ.					
4.14	Атомно-силовая микроскопия. Колебательные методики АСМ. Бесконтактный и					
1 15	полуконтактный режимы.					
4.15	Электросиловая микроскопия.					
4.16	Магнитно-силовая микроскопия.					
5.1	Тема 5 «Методы спектроскопии»					
5.2	Методы спектроскопии. Спектроскопия обратного резерфордовского рассеяния. Методы спектроскопии. Оже-спектроскопия.					
5.3	Методы спектроскопии. Оже-спектроскопия. Методы спектроскопии. Масс-спектрометрия вторичных ионов.					
5.4	Методы спектроскопии. Рентгеновская эмиссионная спектроскопия.					
5.5	Методы спектроскопии. Рентгеновская адсорбционная спектроскопия (спектроскопия					
5.5	поглощения).					
5.6	Методы спектроскопии. Рентгеновская фотоэлектронная спектроскопия.					
5.7	Методы спектроскопии. Ультрафиолетовая фотоэлектронная спектроскопия.					
5.8	Методы спектроскопии. Спектроскопия характеристических потерь энергии					
2.0	ттогоды опоктрооконии. Споктроокония ларакториотических поторь эпергии					

	электронов.					
5.9	Методы спектроскопии. Мёссбауэровская (гамма-резонансная) спектроскопия.					
5.10	Методы спектроскопии. Оптическая инфракрасная, в видимой области спектра и ультрафиолетовая спектроскопии.					
5.11	Методы спектроскопии. Оптическая спектроскопия комбинационного рассеяния света (Рамановская спектроскопия).					
5.12	Методы спектроскопии. Сканирующая туннельная спектроскопия.					
5.13	Методы исследования электрофизических свойств наносистем. Методы вольтамперных и вольт-фарадных характеристик.					
5.14	Методы исследования электрофизических свойств наносистем. Спектроскопия адмиттанса.					
5.15	Методы исследования электрофизических свойств наносистем. Нестационарная спектроскопия глубоких уровней.					
5.16						
	Тема 6 «Методы структурного анализа»					
6.1	Методы структурного анализа, основанные на дифракции электронов. Общие представления.					
6.2	Методы структурного анализа. Дифракция медленных электроно.					
6.3	Методы структурного анализа. Дифракция отраженных быстрых электронов.					
6.4	Методы структурного анализа. Метод Дебая.					
	Тема 7 «Методы определения элементного состава»					
7.1	Методы определения элементного состава. Гравиметрический (весовой) и титриметрический (объемный) анализы.					
7.2	Методы определения элементного состава. Атомно-абсорбционный метод.					
7.3	Методы определения элементного состава. Рентгеноспектральный микроанализ (энергодисперсионный и с волновой дисперсией).					
7.4	Методы определения удельной поверхности нанопорошков.					
7.5	Методы определения средних размеров наночастиц.					

Составил

к.т.н., доцент кафедры микро- и наноэлектроники

Вишняков Н.В.

Зав. кафедрой микро- и наноэлектроники

д.ф.-м.н., доцент

Литвинов В.Г.