МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра радиотехнических устройств

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

по дисциплине

Б1.В.01 **«Основы электроники»** Направление подготовки 11.03.01 Радиотехника

Направленность (профиль) подготовки
Беспроводные технологии в информационных системах
Аппаратно-программная инженерия радиолокационных и навигационных систем
Программно-аппаратные средства систем радиомониторинга и радиоэлектронной
борьбы

Радиофотоника

Беспроводные технологии в радиотехнических системах и устройствах Радиотехнические системы локации, навигации и телевидения

> Уровень подготовки **Бакалавриат**

Квалификация выпускника – бакалавр

Формы обучения – очная

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель — оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача— обеспечить оценку уровня сформированности профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков, приобретённых обучающимися на лабораторных работах. При выполнении лабораторных работ применяется система оценки «зачтено – не зачтено».

Промежуточный контроль по дисциплине осуществляется проведением экзамена. Форма проведения экзамена — устный ответ по утвержденным экзаменационным билетам, сформулированным с учетом содержания учебной дисциплины. В экзаменационный билет включается два теоретических вопроса. В процессе подготовки к устному ответу экзаменуемый может составить в письменном виде план ответа, включающий в себя определения, выводы формул, рисунки и т.п.

Профессиональные компетенции выпускников и индикаторы их достижения

Код	Формулировка компетенции	Индикаторы достижения
ПК-2	Способен проводить	ПК-2.1. Выполняет расчет электрических
	исследование модернизируемых	режимов компонентной базы бортовой
	функциональных узлов бортовой	аппаратуры космических аппаратов
	аппаратуры космических	ПК-1.2. Проводит измерения режимов работы
	аппаратов	элементов бортовой аппаратуры космических
		аппаратов

Паспорт фонда оценочных средств по дисциплине

N ₂ π/π	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контролируем ой компетенции (или её части)	Наимено вание оценочно го средства
1	2	3	4
	Введение. Электроника в современной науке и технике. Электронные приборы. Краткая история и перспективы развития электроники. Материалы электронной техники. Электрические переходы.		
1.1	Основные понятия и определения. История и перспективы электроники	ПК-2	Экзамен

1.2	Основные положения теории электропроводности твердых тел	ПК-2	Экзамен
1.3	Кристаллическая структура чистого полупроводника	ПК-2	Экзамен
1.4	Примесные полупроводники	ПК-2	Экзамен
	Р-п-переход		
2.1	Электрические переходы в полупроводниках	ПК-2	Экзамен
2.2	Электронно-дырочные переход и его свойства при	ПК-2	Экзамен
	отсутствии внешнего поля		
2.3	Электронно-дырочный переход и его свойства при воздействии прямого напряжения	ПК-2	Экзамен
2.4	Электронно-дырочный переход и его свойства при воздействии обратного напряжения	ПК-2	Экзамен
2.5	Переходы металл-полупроводник	ПК-2	Экзамен
2.6	Свойства и характеристики р-п-перехода	ПК-2	Экзамен
2.7	Пробои р-п-переходов	ПК-2	Экзамен
2.8	Емкости р-п-перехода	ПК-2	Экзамен
2.9	Основные технологические процессы изготовления р-n-переходов	ПК-2	Экзамен
	Полупроводниковые диоды		
3.1	Основные понятия и принципы	ПК-2	Экзамен
3.2	Эквивалентная схема	ПК-2	Экзамен
3.3	Выпрямительные диоды	ПК-2	Экзамен
3.4	Импульсные диоды	ПК-2	Экзамен
3.5	Стабилитроны	ПК-2	Экзамен
3.6	Варикапы	ПК-2	Экзамен
3.7	Диоды других типов	ПК-2	Экзамен
	Биполярные транзисторы		
4.1	Основные понятия и принципы	ПК-2	Экзамен
4.2	Схема включения транзистора с общей базой	ПК-2	Экзамен
4.3	Схема включения транзистора с общим эмиттером	ПК-2	Экзамен
4.4	Схема включения транзистора с общим коллектором	ПК-2	Экзамен
4.5	Влияние режима работы транзистора и температуры окружающей среды на его параметры и характеристики	ПК-2	Экзамен
4.6	Модели биполярных транзисторов	ПК-2	Экзамен
4.7	Частотные свойства биполярных транзисторов	ПК-2	Экзамен
4.8	Собственные шумы биполярных транзисторов	ПК-2	Экзамен
4.9	Технология изготовления биполярных	ПК-2	Экзамен
	транзисторов.		
	Полевые транзисторы		
5.1	Общие понятия и принципы	ПК-2	Экзамен
5.2	Полевые транзисторы с управляющим p-n- переходом	ПК-2	Экзамен
		ПГ Э	Dringstorr
5.3	МДП транзисторы со встроенным каналом	ПК-2	Экзамен
5.3 5.4	МДП транзисторы со встроенным каналом МДП транзисторы с индуцированным каналом	ПК-2 ПК-2	Экзамен

	металл-полупроводник и гетеропереходом		
	Фотоэлектрические и излучательные приборы		
6.1	Фоторезисторы	ПК-2	Экзамен
6.2	Фотодиоды	ПК-2	Экзамен
6.3	Фототранзисторы	ПК-2	Экзамен
6.4	Фототиристоры	ПК-2	Экзамен
6.5	Светодиоды	ПК-2	Экзамен
6.6	Оптроны	ПК-2	Экзамен
6.7	Инжекционный лазер	ПК-2	Экзамен
	Элементы интегральных схем		
7.1	Классификация интегральных микросхем	ПК-2	Экзамен
7.2	Основные компоненты интегральных схем	ПК-2	Экзамен
	Приборы вакуумной электроники		
8.1	Общие понятия и принципы	ПК-2	Экзамен
8.2	Электровакуумный диод	ПК-2	Экзамен
8.3	Электровакуумный триод	ПК-2	Экзамен
8.4	Многоэлектродные электровакуумные лампы	ПК-2	Экзамен
8.5	Электровакуумные микролампы	ПК-2	Экзамен
8.6	Индикаторные приборы	ПК-2	Экзамен
8.7	СВЧ электронные лампы	ПК-2	Экзамен

Критерии оценивания компетенций (результатов)

- 1). Уровень усвоения материала, предусмотренного программой.
- 2). Умение анализировать материал, устанавливать причинно-следственные связи.
- 3). Ответы на вопросы: полнота, аргументированность, убежденность, умение
- 4). Качество ответа (его структура, логичность, убежденность, общая эрудиция)
- 5). Использование дополнительной литературы при подготовке ответов.

Уровень освоения знаний, умений и навыков по дисциплине оценивается в форме бальной отметки:

«Отлично» заслуживает студент, обнаруживший всестороннее, систематическое и глубокое знание учебно-программного материала, умение свободно выполнять задания, предусмотренные программой, усвоивший основную и знакомый с дополнительной литературой, рекомендованной программой. Как правило, оценка «отлично» выставляется студентам, усвоившим взаимосвязь основных понятий дисциплины в их значении для приобретаемой профессии, проявившим творческие способности в понимании, изложении и использовании учебно-программного материала.

«Хорошо» заслуживает студент, обнаруживший полное знание учебнопрограммного материала, успешно выполняющий предусмотренные в программе задания, усвоивший основную литературу, рекомендованную в программе. Как правило, оценка «хорошо» выставляется студентам, показавшим систематический характер знаний по дисциплине и способным к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и профессиональной деятельности.

«Удовлетворительно» заслуживает студент, обнаруживший знания основного учебно-программного материала в объеме, необходимом для дальнейшей учебы и предстоящей работы по специальности, справляющийся с выполнением заданий, предусмотренных программой, знакомый с основной литературой, рекомендованной

программой. Как правило, оценка «удовлетворительно» выставляется студентам, допустившим погрешности в ответе на экзамене и при выполнении экзаменационных заданий, но обладающим необходимыми знаниями для их устранения под руководством преподавателя.

«Неудовлетворительно» выставляется студенту, обнаружившему пробелы в знаниях основного учебно-программного материала, допустившему принципиальные ошибки в выполнении предусмотренных программой заданий. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение или приступить к профессиональной деятельности по окончании вуза без дополнительных занятий по соответствующей дисциплине.

Типовые контрольные задания или иные материалы

Типовые задания для самостоятельной работы

Чтение, анализ и конспектирование научной литературы по темам и проблемам курса.

Ответы на контрольные вопросы.

Конспектирование, аннотирование научных публикаций.

Перечень лабораторных работ и вопросов для контроля			
№ работ ы	Название лабораторной работы и вопросы для контроля		
1	Исследование пассивных элементов интегральных схем		
	1. Что представляет собой интегральная микросхема? Классификация		
	современных микросхем по технологии изготовления.		
	2. Резисторы полупроводниковых интегральных схем, их конструкции,		
	свойства, эквивалентная схема.		
	3. Частотные характеристики диффузионных резисторов.		
	4. Температурные характеристики диффузионных резисторов.		
	5. Конденсаторы полупроводниковых ИМС, их конструкции, свойства,		
	ЭКВИВАЛЕНТНАЯ СХЕМА.		
	6. Частотные характеристики диффузионных конденсаторов.		
	7. Температурные характеристики диффузионных конденсаторов. 8. Пленочные резисторы, типы, конструкции. Схема замещения. Основные		
	свойства и характеристики.		
	1		
	9. Пленочные конденсаторы, типы, конструкции. Схема замещения.		
	Основные свойства и характеристики. 10. Пленочные индуктивности, типы, конструкции. Основные свойства и		
	характеристики.		
	11. Методы изготовления тонкопленочных элементов.		
	12. Технология изготовления толстопленочных микросхем. 13. Сравнение свойств пассивных элементов полупроводниковых и		
	пленочных микросхем.		
2	Исследование интегрального диода		
	1. Полупроводниковые диоды: условное обозначение, классификация.		
	2. Идеализированная и реальная вольт-амперная характеристика диода.		
	3. Зависимость обратного тока диода от температуры.		
	4. Уравнение Эберса – Молла для диода, падение прямого напряжения на		
	диоде, зависимость этого напряжения от теплового тока диода.		
	5. Вольт-амперные характеристики кремниевого и германиевого диодов,		
	влияние температуры.		
	6. Эквивалентная схема диода. Физический смысл составляющих этой схемы.		
	Особенности эквивалентной схемы для низких и средних частот.		
	7. Выпрямительные диоды. Назначение, особенности и основные параметр		

- 8. Импульсные диоды. Назначение, особенности и основные параметры. Диоды Шоттки, особенности их вольтамперных характеристик и основные параметры.
- 9. Стабилитроны. Вольтамперная характеристика, схема включения, условие стабилизации, работа с нагрузкой, основные параметры. Прецизионные стабилитроны. Стабисторы.
- 10. Варикапы: условное обозначение, схема включения и эквивалентная схема, вольтфарадная характеристика, основные параметры и области применения.
- 11. Светодиоды: принцип действия, спектральные характеристики и области применения. Инжекционный лазер.
- 12. Фотодиоды: принцип действия, уравнение Эберса Молла, вольтамперные характеристики, режимы работы, зависимость тока и напряжения от светового потока в этих режимах, основные параметры и области применения.
- 13. Оптроны: принцип действия, характеристики и области применения.
- 14. Туннельные диоды, диоды СВЧ и Ганна. Принципы работы, ВАХ, области применения.
- 15. Генераторы шума, магнитодиоды. Принципы работы, ВАХ, области применения.
- 16. Способы диодного включения интегральной транзисторной структуры. Сравнение структур по следующим параметрам:
- а) максимально допустимому рабочему напряжению;
- б) обратному сопротивлению;
- в) высокочастотным свойствам;
- г) прямому сопротивлению;
- д) быстродействию.

3 Исследование интегрального биполярного транзистора в схеме с ОЭ

- 1. Биполярные транзисторы: определение, типы, принцип действия, коэффициент передачи тока эмиттера, эффект Эрли, «прокол» базы, накопление и рассасывание неосновных носителей заряда в базе.
- 2. Биполярные транзисторы: пробои переходов, вторичный пробой, режимы работы, параметры, характеризующие усилительные свойства транзисторов, входное сопротивление, возможные схемы включения.
- 3. Схема включения транзистора с общим эмиттером. Определение основных параметров (коэффициенты усиления, входное сопротивление) и вольтамперные характеристики.
- 4. Использование выходных характеристик схемы с ОЭ для анализа и расчета схем с нагрузкой: нагрузочная прямая, рабочая точка, режимы работы.
- 5. Влияние режима работы транзистора и температуры окружающей среды на его коэффициент передачи тока в схеме включения с ОЭ.
- 6. Модели биполярных транзисторов Эберса Молла (простейшая и модифицированная), общие аналитические выражения для токов транзистора.
- 7. Малосигнальная физическая схема замещения интегрального транзистора на высокой частоте. Ее основные параметры, отличие от схемы дискретного транзистора.
- 8. Модель биполярного транзистора в виде активного четырехполюсника: принцип построения модели и составления системы уравнений для системы Н–параметров. Физический смысл ее коэффициентов, эквивалентная схема.
- 9. Модель биполярного транзистора в виде активного четырехполюсника: принцип построения модели и составления системы уравнений для системы У-параметров. Физический смысл ее коэффициентов, эквивалентная схема.

4 Исследование интегрального биполярного транзистора в схеме с ОБ

1. Схема включения транзистора с общей базой. Определение основных параметров (коэффициенты усиления, входное сопротивление) и вольтамперные характеристики.

- 2. Схема включения транзистора с общим коллектором. Определение основных параметров (коэффициенты усиления, входное сопротивление), вольт-амперные характеристики и области применения.
- 3. Сравнительная характеристика схем включения биполярного транзистора.
- 4. Влияние температуры окружающей среды на вольт-амперные характеристики биполярных транзисторов (схемы включения с ОЭ и ОБ).
- 5. Частотные свойства биполярных транзисторов: основные причины снижения усилительных свойств.
- 6. Предельные частоты усиления для схем с ОБ и ОЭ, максимальная частота генерации, граничная частота усиления тока.
- 7. Способы улучшения частотных свойств биполярных транзисторов.
- 8. Собственные шумы биполярных транзисторов: основные составляющие полного шума, коэффициент шума и его зависимость от режима работы транзистора, температуры, внутреннего сопротивления источника сигнала и схемы включения транзистора, распределение шумов в диапазоне частот. Малошумящие транзисторы.
- 9. Технология изготовления биполярных транзисторов.

Вопросы к экзамену

- 1. Основные понятия и определения электроники. Краткая история и перспективы её развития. Классификация электронных приборов, основные принципы их действия и требования, предъявляемые к ним.
- 2. Основные положения теории электропроводности твердых тел. Зонная теория. Проводники, диэлектрики, полупроводники.
- 3. Кристаллическая структура чистого полупроводника. Процессы генерации и рекомбинации. Типы проводимости, собственная электропроводность полупроводника. Дрейфовые и диффузионные токи в полупроводниках.
- 4. Донорные и акцепторные примеси, типы полупроводников, основные и неосновные носители. Уровень Ферми.
- 5. Электрические переходы в полупроводниках: электронно-дырочные, симметричные и несимметричные, резкие и плавные, металл-полупроводник, гетеропереходы. Уровень Ферми в p-n-переходе.
- 6. Электронно-дырочные переход и его свойства при отсутствии внешнего поля, контактная разность потенциалов, потенциальная диаграмма, потенциальный барьер и его высота, диффузионный ток, ток дрейфа, полный ток, распределение концентрации носителей, запирающий слой.
- 7. Электронно-дырочный переход и его свойства при воздействии прямого напряжения, инжекция носителей заряда, прямой ток, эмиттерная и базовая области.
- 8. Электронно-дырочный переход и его свойства при воздействии обратного напряжения, экстракция носителей заряда, обратный ток.
- 9. Переходы металл-полупроводник и их свойства. Невыпрямляющие контакты. Барьер Шоттки.
- 10. Вольтамперная характеристика p-n перехода. Уравнение Эберса-Молла. Тепловой ток, дифференциальное сопротивление, напряжение контактной разности потенциалов и свойства перехода.
- 11. Виды и причины возникновения пробоев p-n переходов. Емкости p-n-перехода.
- 12. Основные технологические процессы изготовления р-п переходов. Технология изготовления биполярных транзисторов.
- 13. Полупроводниковые диоды: условное обозначение, классификация, идеализированная и реальная вольтамперная характеристика (BAX), зависимость обратного тока от температуры, уравнение прямой ветви BAX диода, падение прямого напряжения на диоде, зависимость этого напряжения от теплового тока диода.
- 14. Вольтамперные характеристики кремниевого и германиевого диодов, влияние температуры. Эквивалентная схема диода. Физический смысл составляющих этой схемы.

Особенности эквивалентной схемы для низких и средних частот.

- 15. Выпрямительные диоды. Назначение, особенности и основные параметры.
- 16. Импульсные диоды. Назначение, особенности и основные параметры. Диоды Шоттки, особенности их вольтамперных характеристик и основные параметры.
- 17. Стабилитроны. Условное обозначение, вольтамперная характеристика, схема включения, условие стабилизации, работа с нагрузкой, основные параметры. Прецизионные стабилитроны. Стабисторы.
- 18. Варикапы: условное обозначение, схема включения и эквивалентная схема, вольтфарадная характеристика, основные параметры и области применения.
- 19. Светодиоды: принцип действия, спектральные характеристики и области применения. Инжекционный лазер.
- 20. Фотодиоды: принцип действия, уравнение Эберса-Молла, вольтамперные характеристики, режимы работы, зависимость тока и напряжения от светового потока в этих режимах, основные параметры и области применения.
- 21. Оптроны: принцип действия, характеристики и области применения.
- 22. Туннельные диоды, диоды СВЧ и диоды Ганна. Принципы работы, ВАХ, области применения.
- 23. Генераторы шума, магнитодиоды. Принципы работы, ВАХ, области применения.
- 24. Биполярные транзисторы: определение, типы, принцип действия, коэффициент передачи тока эмиттера, эффект Эрли, «прокол» базы, накопление и рассасывание неосновных носителей заряда в базе.
- 25. Биполярные транзисторы: пробои переходов, вторичный пробой, режимы работы, параметры, характеризующие усилительные свойства транзисторов, входное сопротивление, возможные схемы включения.
- 26. Схема включения транзистора с общей базой. Определение основных параметров (коэффициенты усиления, входное сопротивление) и вольтамперные характеристики.
- 27. Схема включения транзистора с общим эмиттером. Определение основных параметров (коэффициенты усиления, входное сопротивление) и вольтамперные характеристики.
- 28. Схема включения транзистора с общим коллектором. Определение основных параметров (коэффициенты усиления, входное сопротивление), вольтамперные характеристики и области применения.
- 29. Использование выходных характеристик схемы с ОЭ для анализа и расчета схем с нагрузкой: нагрузочная прямая, рабочая точка, режимы работы.
- 30. Влияние режима работы биполярного транзистора и температуры окружающей среды на его коэффициенты передачи тока. Влияние температуры окружающей среды на вольтамперные характеристики биполярных транзисторов (схемы включения с ОЭ и ОБ).
- 31. Модели биполярных транзисторов Эберса-Молла (простейшая и модифицированная), общие аналитические выражения для токов транзистора.
- 32. Малосигнальная физическая схема замещения интегрального транзистора на высокой частоте. Ее основные параметры, отличие от схемы дискретного транзистора.
- 33. Модель биполярного транзистора в виде активного четырехполюсника: принцип построения модели и составления системы уравнений для системы Н параметров. Физический смысл ее коэффициентов, эквивалентная схема.
- 34. Модель биполярного транзистора в виде активного четырехполюсника: принцип построения модели и составления системы уравнений для системы Y параметров. Физический смысл ее коэффициентов, эквивалентная схема.
- 35. Частотные свойства биполярных транзисторов: основные причины снижения усилительных свойств, предельные частоты усиления для схем ОБ и ОЭ, максимальная частота генерации, граничная частота усиления тока. Способы улучшения частотных свойств биполярных транзисторов.
- 36. Собственные шумы биполярных транзисторов: основные составляющие полного шума, коэффициент шума и его зависимость от режима работы транзистора, температуры, внутреннего сопротивления источника сигнала и схемы включения транзистора, распределение шумов в диапазоне частот. Малошумящие транзисторы.
- 37. Полевые транзисторы: принцип действия, отличие от биполярных, схемы включения, схемы замещения (физическая и в виде активного четырехполюсника), основные параметры, преимущества и области применения.

- 38. Устройство и принцип действия полевых транзисторов с управляющим p-n-переходом. Вольтамперные характеристики в схеме с общим истоком, основные параметры.
- 39. Устройство и принцип действия МДП транзисторов со встроенным каналом.
- Вольтамперные характеристики в схеме с общим истоком и их основные параметры.
- 40. Устройство и принцип действия МДП транзисторов с индуцированным каналом. Вольтамперные характеристики в схеме с общим истоком и их основные параметры.
- 41. Устройство и принцип действия полевых транзисторов с барьером Шоттки. Нормально открытые и нормально закрытые транзисторы. Вольтамперные характеристики в схеме с общим истоком.
- 42. Интегральные микросхемы: классификация и их основные компоненты транзисторы, диоды, резисторы, конденсаторы. Особенности активных и пассивных элементов интегральных микросхем. Способы диодного включения интегральной транзисторной структуры и сравнение их по основным параметрам.
- 43. Приборы вакуумной электроники. Электронные лампы, электронная и термоэлектронная эмиссия, эффект Шоттки, эмиссионный ток. Основные типы катодов, их устройство, достоинства и недостатки.
- 44. Электровакуумный диод: устройство, принцип работы, закон степени трех вторых, режим насыщения, анодная характеристика, основные параметры.
- 45. Электровакуумный триод: устройство, принцип работы, вольтамперные характеристики, формула Баркгаузена, основные параметры и недостатки.
- 46. Многоэлектродная электровакуумная лампа тетрод: устройство, принцип работы, особенности вольтамперных характеристик, достоинства и недостатки.
- 47. Многоэлектродная электровакуумная лампа пентод: устройство, принцип работы, вольтамперные характеристики, достоинства и недостатки.
- 48. Вакуумные интегральные схемы. Электровакуумные микролампы: особенности работы, основные типы катодов, основные достоинства. Устройство и принцип работы электровакуумного микротриода.
- 49. Особенности работы электронных ламп с электростатическим управлением на СВЧ. Основные типы таких электронных ламп для СВЧ.
- 50. Электровакуумные приборы СВЧ с динамическим управлением: принцип действия и основные типы.
- 51. Пролетный клистрон: устройство и принцип работы, достоинства и недостатки.
- 52. Отражательный клистрон: устройство и принцип работы, диапазон применения.
- 53. ЛБВ и ЛОВ О-типа: устройство и принцип работы, достоинства и недостатки. Основные типы замедляющих систем.
- 54. Магнетрон: устройство и основные характеристики. Митроны.
- 55. Индикаторные приборы: основные типы, устройство и принцип работы. Дисплеи.

Контрольные вопросы для оценки сформированности компетенций

(при ответе на вопрос необходимо из приведенных вариантов выбрать правильные ответы)

- 1. Твёрдое тело имеет ширину запрещенной зоны 1,5 эВ. К какой группе оно относится согласно зонной теории?
- проводник
- + полупроводник
- диэлектрик
- 2. Твёрдое тело имеет ширину запрещенной зоны 6,5 эВ. К какой группе оно относится согласно зонной теории?
- проводник
- полупроводник
- + диэлектрик
- 3. В твёрдом теле отсутствует запрещенная зона. К какой группе оно относится согласно зонной теории?
- + проводник

- полупроводник
- диэлектрик
- 4. Чем объясняется увеличение проводимости полупроводников с увеличением температуры?
- при повышении температуры увеличиваются концентрация и подвижность носителей заряда
- при повышении температуры увеличивается подвижность носителей заряда
- + при повышении температуры увеличивается концентрация носителей заряда
- 5. Чем объясняется уменьшение проводимости проводников с увеличением температуры?
- при повышении температуры уменьшаются концентрация и подвижность носителей заряда
- при повышении температуры уменьшается концентрация носителей заряда
- + при повышении температуры концентрация носителей заряда практически не изменяется, а их и подвижность уменьшается.
- 6. При внесении в чистый полупроводник донорной примеси электропроводность обеспечивается главным образом:
- избытком свободных дырок
- + избытком свободных электронов
- 7. При внесении в чистый полупроводник акцепторной примеси электропроводность обеспечивается главным образом:
- + избытком свободных дырок
- избытком свободных электронов
- 8. Каким можно считать ток, протекающий через электронно-дырочный переход при приложении к нему прямого напряжения?
- + диффузионным
- током проводимости (дрейфа)
- 9. Каким можно считать ток, протекающий через электронно-дырочный переход при приложении к нему обратного напряжения?
- диффузионным
- + током проводимости (дрейфа)
- 10. От чего зависит получение при соединении металла и полупроводника невыпрямляющего омического контакта или барьера Шоттки?
- + от работы выхода электронов в металле и полупроводнике
- от концентрации внесенных в полупроводник примесей
- от температуры
- 11. Как функционально связаны удельная проводимость полупроводника, концентрация носителей заряда и подвижность носителей заряда?
- + удельная проводимость определяется произведением концентрации носителей и их подвижности
- удельная проводимость определяется отношением концентрации носителей к их подвижности
- удельная проводимость определяется разностью концентрации носителей и их подвижности
- удельная проводимость определяется суммой концентрации носителей и их подвижности
- 12. Как математически связаны прямой ток, протекающий через электронно-дырочный переход, и напряжение, приложенное к этому переходу?
- + ток зависит от напряжения по экспоненциальному закону
- ток прямо пропорционален напряжению
- ток обратно пропорционален напряжению
- величина тока практически постоянная и не зависит от напряжения
- 13. Как математически связаны обратный ток, протекающий через электронно-дырочный переход, и напряжение, приложенное к этому переходу?
- ток зависит от напряжения по экспоненциальному закону
- ток прямо пропорционален напряжению
- ток обратно пропорционален напряжению
- + величина тока практически постоянная (очень маленькая) и не зависит от напряжения

- 14. Дифференциальное сопротивление диода определяется как
- отношение напряжения, приложенного к диоду, к току, протекающему через диод
- + отношение малого приращения напряжения, приложенного к диоду, к малому приращения тока, протекающего через диод
- сопротивление диода является постоянной величиной, не зависящей от напряжения и тока
- 15. Стабилитроны это диоды, работающие в режиме:
- + туннельного пробоя
- + лавинного пробоя
- + смешанного пробоя
- теплового пробоя
- 16. Стабисторы это диоды, использующие:
- участок вольтамперной характеристики (ВАХ), соответствующий обратному электрическому пробою
- + прямую ветвь ВАХ специальной формы
- положение рабочей точки не влияет на стабилизацию напряжения
- 17. Емкость варикапа зависит от величины обратного напряжения
- + по нелинейному закону (чем больше обратное напряжение, тем меньше емкость)
- по линейному закону (чем больше обратное напряжение, тем больше емкость)
- по линейному закону (чем больше обратное напряжение, тем меньше емкость)
- 18. В фотодиоде, работающем (без включения нагрузки) в режиме короткого замыкания, ток, протекающий через фотодиод
- + прямо пропорционален величине светового потока, падающего на этот фотодиод
- обратно пропорционален величине светового потока, падающего на этот фотодиод
- практически не зависит от величины светового потока, падающего на этот фотодиод
- прямо пропорционален логарифму от величины светового потока, падающего на этот фотодиод
- практически не зависит от величины светового потока, падающего на этот фотодиод 19. В фотодиоде, работающем (без включения нагрузки) в режиме холостого хода, напряжение на фотодиоде
- прямо пропорционально величине светового потока, падающего на этот фотодиод
- обратно пропорционально величине светового потока, падающего на этот фотодиод
- практически не зависит от величины светового потока, падающего на этот фотодиод
- + прямо пропорционально логарифму от величины светового потока, падающего на этот фотодиод
- 20. Коэффициент усиления по току биполярного транзистора определяется как:
- отношение выходного тока к величине входного тока
- + отношение малого приращения выходного тока к величине малого приращения входного тока
- отношение выходного напряжения к величине входного напряжения
- отношение малого приращения выходного напряжения к величине малого приращения входного тока
- 21. Коэффициент усиления по напряжению биполярного транзистора определяется как:
- отношение выходного напряжения к величине выходного тока
- отношение малого приращения выходного тока к величине малого приращения входного тока
- отношение выходного напряжения к величине входного напряжения
- + отношение малого приращения выходного напряжения к величине малого приращения входного напряжения
- 22. Входное сопротивление биполярного транзистора определяется как:
- отношение входного напряжения к величине входного тока
- отношение малого приращения выходного тока к величине малого приращения входного тока
- отношение выходного напряжения к величине входного напряжения
- + отношение малого приращения входного напряжения к величине малого приращения входного тока
- 23. Наибольший коэффициент усиления по напряжению обеспечивает каскад на

биполярном транзисторе:

- + с ОЭ
- + с ОБ
- c OK
- 24. Наибольший коэффициент усиления по току обеспечивает каскад на биполярном транзисторе:
- + c ОЭ
- с ОБ
- + c OK
- 25. Наибольший коэффициент усиления по мощности обеспечивает каскад на биполярном транзисторе:
- + с ОЭ
- с ОБ
- c OK
- 26. Наибольшее входное сопротивление имеет каскад на биполярном транзисторе:
- с ОЭ
- с ОБ
- + c OK
- 27. В каком направлении необходимо включить p-n переход полевого транзистора с управляющим переходом:
- в прямом
- + в обратном
- направление не имеет значения
- 28. Какой вывод можно сделать на основе анализа проходной ВАХ полевого транзистора с управляющим переходом (JFET):
- этот транзистор может работать только в режиме обогащения
- + этот транзистор может работать только в режиме обеднения
- этот транзистор может работать и в режиме обеднения, и в режиме обогащения
- 29. Какой вывод можно сделать на основе анализа проходной BAX MOSFET транзистора со встроенным каналом:
- этот транзистор может работать только в режиме обогащения
- этот транзистор может работать только в режиме обеднения
- + этот транзистор может работать и в режиме обеднения, и в режиме обогащения
- 30. Какой вывод можно сделать на основе анализа проходной BAX MOSFET транзистора с индуцированнным каналом:
- + этот транзистор может работать только в режиме обогащения
- этот транзистор может работать только в режиме обеднения
- этот транзистор может работать и в режиме обеднения, и в режиме обогащения
- 31. Какой вывод можно сделать на основе анализа проходной ВАХ нормально открытого полевого транзистора с барьером Шоттки:
- этот транзистор может работать только в режиме обогащения
- этот транзистор может работать только в режиме обеднения
- + этот транзистор может работать и в режиме обеднения, и в режиме обогащения
- 32. Какой вывод можно сделать на основе анализа проходной ВАХ нормально закрытого полевого транзистора с барьером Шоттки:
- + этот транзистор может работать только в режиме обогащения
- этот транзистор может работать только в режиме обеднения
- этот транзистор может работать и в режиме обеднения, и в режиме обогащения
- 33. Электровакуумные приборы (ЭВП) это приборы, в которых ток образуется:
- + движением электронов
- движением электронов и дырок
- движением дырок
- 34. Электровакуумный триод может работать при токе сетки
- + = 0
- + > 0
- < 0
- 35. В электровакуумном триоде предпочтительной является работа при напряжении сетки

- = 0
- > 0
- ≤ 0
- 36. В электровакуумных микролампах используются:
- + холодные катоды, работающие на основе автоэлектронной эмиссии
- катоды косвенного и прямого накала
- только катоды косвенного накала
- только катоды прямого накала
- 37. Для обеспечения электростатического управления электронным потоком в электровакуумных приборах необходимо чтобы выполнялось условие:
- + время пролета электронов между электродами лампы << периода колебаний входного сигнала
- время пролета электронов между электродами лампы > периода колебаний входного сигнала
- время пролета электронов между электродами лампы = периоду колебаний входного сигнала
- время пролета электронов по сравнению с периодом колебаний входного сигнала может быть любым
- 38. В электровакуумных приборах СВЧ с динамическим управлением электронным потоком, время пролета электронов между электродами лампы может быть
- + порядка и больше периода колебаний входного сигнала
- << периода колебаний входного сигнала
- 39. В электровакуумных СВЧ приборах О-типа:
- + электрические и магнитные поля (если последнее присутствует) направлены вдоль скорости электронного потока
- движение электронов осуществляется во взаимно перпендикулярных электрическом и магнитном полях
- 40. В электровакуумных СВЧ приборах М-типа:
- электрические и магнитные поля (если последнее присутствует) направлены вдоль скорости электронного потока
- + движение электронов осуществляется во взаимно перпендикулярных электрическом и магнитном полях

Составил старший преподаватель кафедры радиотехнических устройств

В.А. Степашкин

Заведующий кафедрой радиотехнических устройств д.т.н., профессор

Ю.Н. Паршин