МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

Кафедра «Космические технологии»

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

Б1.В.07 «Обеспечение качества и надежности программных систем»

Направление подготовки - 09.03.01 «Информатика и вычислительная техника»

ОПОП академического бакалавриата «Системный анализ и инжиниринг информационных процессов»

Квалификация (степень) выпускника - бакалавр Форма обучения - очная

1. ОБЩИЕ ПОЛОЖЕНИЯ

Оценочные материалы — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур проверки), предназначенных для оценки качества освоения обучающимися данной дисциплины как части ОПОП.

Цель – оценить соответствие знаний, умений и владений, приобретенных обучающимся в процессе изучения дисциплины, целям и требованиям ОПОП в ходе проведения промежуточной аттестации.

Промежуточный контроль по дисциплине осуществляется путем проведения Зачета. Форма проведения Зачета — тестирование и выполнение практических заданий. При необходимости, проводится теоретическая беседа с обучаемым для уточнения оценки. Выполнение заданий на практических занятиях в течение семестра и заданий на самостоятельную работу является обязательным условием для допуска к Зачету.

2. ПАСПОРТ ОЦЕНОЧНЫХ МАТЕРИАЛОВ ПО ДИСЦИПЛИНЕ

Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код контролируемой ком- петенции (или её части)	Наименование оценочного средства
Тема 1. Основы теории надежности технических систем Тема 2. Обеспечение надежности про-	ПК-1.4, ПК-1.5, ПК-4.7	экзамен
граммных систем Тема 3. Обеспечение качества программных систем	ПК-4.11, ПК-4.12	экзамен

3. ОПИСАНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ

Сформированности каждой компетенции в рамках освоения данной дисциплины оцениваются по трехуровневой шкале:

- 1) пороговый уровень является обязательным для всех обучающихся по завершении освоения дисциплины;
- 2) продвинутый уровень характеризуется превышением минимальных характеристик сформированности компетенций по завершении освоения дисциплины;
- 3) эталонный уровень характеризуется максимально возможной выраженностью компетенций и является важным качественным ориентиром для самосовершенствования.

3.1. Описание критериев и шкалы оценивания промежуточной аттестации

а) описание критериев и шкалы оценивания тестирования:

За каждый тестовый вопрос назначается максимально 1 балл в соответствии со следующим правилом:

- 1 балл ответ на тестовый вопрос полностью правильный;
- 0,5 балла отчет на тестовый вопрос частично правильный (выбраны не все правильные варианты, указаны частично верные варианты);
 - 0 баллов ответ на тестовый вопрос полностью не верный.

б) описание критериев и шкалы оценивания решения практического задания:

Шкала оценивания	Критерий
10 баллов	Задание выполнено верно, полностью самостоятельно, без до-
(эталонный уровень)	полнительных наводящих вопросов преподавателя
7 балла	Задание выполнено верно, но имеются технические неточности
(продвинутый уровень)	
4 балла	Задание выполнено верно, с дополнительными наводящими
(пороговый уровень)	вопросами преподавателя
0 баллов	Задание не выполнено

На Зачет выносятся 40 тестовых вопросов и 2 практических задания. Максимально студент может набрать 60 баллов. Итоговый суммарный балл студента, полученный при прохождении промежуточной аттестации, переводится в традиционную форму по системе «отлично», «хорошо», «удовлетворительно», «не удовлетворительно».

Шкала оценивания	Критерий	
отлично	55 – 60 баллов	Обязательным условием является выпол-
(эталонный уровень)		нение всех предусмотренных в течении
хорошо	50 – 54 баллов	семестра заданий (на практических заня-
(продвинутый уровень)		тиях и при самостоятельной работе)
удовлетворительно	35 – 49 баллов	
(пороговый уровень)		
не удовлетворительно	0 – 34 баллов	Студент не выполнил всех предусмотрен-
		ных в течении семестра текущих заданий
		(на практических занятиях и при самосто-
		ятельной работе)

4. ТИПОВЫЕ КОНТРОЛЬНЫЕ ЗАДАНИЯ ИЛИ ИНЫЕ МАТЕРИАЛЫ

4.1. Промежуточная аттестация

Код и наименование компе-	Код и наименование индикатора	
тенции	достижения компетенции	
ПК-1. Способен управлять	ПК-1.4. Осуществляет тестирование ИР с точки зрения пользова-	
работами по созданию	тельского удобства на основании данных о поведении пользова-	
(модификации) и сопровождению	телей.	
информационных ресурсов		
	ПК-1.5. Организует работы по обеспечению безопасной работы	
	информационных ресурсов.	
ПК-4. Способен осуществлять	ПК-4.7. Организует оценку соответствия требованиям существу-	
концептуальное, функциональное	ющих систем и их аналогов.	
и логическое проектирование си-	ПК-4.11. Осуществляет постановку задачи на разработку требо-	
стем среднего и крупного мас-	ваний к подсистемам и контроль их качества.	
штаба и сложности	ПК-4.12. Сопровождает приемочные испытания и ввод в эксплуа-	
	тацию системы.	

а) типовые тестовые вопросы:

Тема 1: Основы теории надежности технических систем.

- 1. Теория надежности как наука и научная дисциплина.
- 2. Определение понятия надежность.
- 3. Понятие отказ, классификация и характеристика отказов.

- 4. Свойства и показатели надежности.
- 5. Критерии надежности не восстанавливаемых систем.
- 6. Критерии надежности восстанавливаемых систем.
- 7. Законы распределения времени до отказа.
- 8. Проблемы анализа надежности сложных технических систем.
- 9. Разработка моделей функционирования сложной системы.
- 10. Методы анализа надежности технических систем.
- 11. Проблемы создания высоко надежных систем.
- 12. Математические модели функционирования технических элементов и систем в смысле их надежности.
 - 13. Общая модель надежности технического элемента.
 - 14. Модель надежности систем в терминах интегральных уравнений.
 - 15. Модель надежности стационарного режима.
 - 16. Модели надежности не восстанавливаемых систем.
- 17. Модели надежности систем при экспоненциальных законах распределения отказов и восстановления элементов.
 - 18. Анализ надежности не восстанавливаемых систем.
 - 19. Надежность не резервированной системы.
 - 20. Надежность простейших резервированных систем.
 - 21. Надежность систем при общем и раздельном резервировании.
 - 22. Анализ надежности восстанавливаемых систем.
- 23. Анализ надежности восстанавливаемых систем с основным соединением элементов.
- 24. Расчет надежности восстанавливаемых систем с основным соединением элементов и произвольных законах распределения отказов и восстановлений.
- 25. Расчет резервированных восстанавливаемых систем при экспоненциальных законах распределения отказов и восстановлений.
- 26. Расчет резервированных восстанавливаемых систем при произвольных законах распределения отказов и восстановлений.

Тема 2: Обеспечение надежности программных систем.

- 1. Классификация информационных систем по признаку структурированности задач
- 2. Типы информационных систем, используемые для решения частично структурированных задач
 - 3. Основные понятия информационной системы
 - 4. Основные характеристики качества ПО
 - 5. Определение надежности программного обеспечения
 - 6. Проблемы надежности программного обеспечения
 - 7. Основные понятия теории надежности комплексов программ
 - 8. Типы отказов программного обеспечения
 - 9. Основные факторы, влияющие на надежность ПО
 - 10. Критерии надежности сложных программных комплексов
 - 11. Понятие математической модели надежности ПО
 - 12. Экспоненциальная модель надежности ПО
 - 13. Модель частоты появления ошибок ПО
 - 14. Модель Вейбулла
 - 15. Модель Миллса
 - 16. Методы проектирования надежного ПО: предупреждение ошибок
 - 17. Методы проектирования надежного ПО: обнаружение ошибок

- 18. Методы проектирования надежного ПО: обеспечение устойчивости к ошибкам
- 19. Понятие избыточности ПО: временная избыточность, информационная избыточность, программная избыточность
 - 20. Принципы и задачи статистического тестирования программ
 - 21. Статистическая комплексная отладка программы
 - 22. Динамическая комплексная отладка без реальных абонентов
 - 23. Динамическая комплексная отладка с реальными абонентами
- 24. Статистическая проверка длительности исполнения комплекса программ и пропускной способности системы
 - 25. Статистические испытания
- 26. Прямые экспериментальные методы определения показателей надежности систем в условиях нормального функционирования
 - 27. Форсированные методы испытаний реальных систем на надежность
 - 28. Расчетно-экспериментальные методы испытаний на надежность
 - 29. Надежность программных комплексов при эксплуатации и сопровождении
 - 30. Модель обеспечения качества
 - 31. Документирование программных средств
 - 32. Тестирование: этапы тестирования
 - 33. Стратегии тестирования
 - 34. Методы интеграции системы
 - 35. Комплексное тестирование

Тема 3: Обеспечение качества программных систем.

- 1. Что понимают под моделями качества процессов разработкипрограммного обеспечения? Для чего они разработаны?
 - 2. Что определяет показатель качества? Как он формируется?
- 3. Что понимают под моделями качества процессов разработкипрограммного обеспечения? Для чего они разработаны?
- 4. Какие виды метрических шкал применяются для измерения метриккачества ПО?
 - 5. В чем разница оценки качества аппаратного и программного обеспечения?
 - 6. Дайте определение эффективности программного средства.
- 7. Каким образом связаны между собой технология программирования и качество ПО?
- 8. Каковы критерии применения различных типов метрик (программного продукта, процесса или использования) в оценке качестве ПО?
 - 9. Что понимается под завершенностью программной системы?
 - 10. Какими основными аспектами характеризуется атрибут защищенности ПС?
 - 11. Какие принципы позволяют обеспечить удобство использования ПО?
- 12. Дайте сравнительную оценку различных подходов к обеспечению мобильности ПС с целью их применения для разработки конкретной ПС?
 - 13. Какими факторами определяется модифицируемость ПС?
- 14. Как понимается практически оправданный стиль программирования, чем он определяется?
- 15. Каким образом использование Web-технологий позволяет обеспечитьвысокую мобильность ПС?
- 16. Как модульность ПС влияет на временную эффективность и эффективность по ресурсам?

б) типовые практические задания:

- **Задача 1.** Аппаратура связи состоит из 2000 элементов, средняя интенсивность отказов которых λ cp= 0,33 10-5 1/час. Необходимо определить вероятность безотказной работы аппаратуры в течении t = 200 час и среднее время безотказной работы аппаратуры.
- **Задача 2.** Невосстанавливаемая в процессе работы электронная машина состоит из 200000 элементов, средняя интенсивность отказов которых λ cp = 0,2 10-6 1/час. Требуется определить вероятность безотказной работы электронной машины в течении t = 24 часа и среднее время безотказной работы электронной машины.
- **Задача 3.** Система управления состоит из 6000 элементов, средняя интенсивность отказов которых λ cp. = 0,16 10-6 1/час. Необходимо определить вероятность безотказной работы в течении t=50 час и среднее время безотказной работы.
- **Задача 4.** Прибор состоит из n = 5 узлов. Надежность узлов характеризуется вероятностью безотказной работы в течение времени t, которая равна: P1(t)=0,98; P2(t)=0,99; P3(t)=0,998; P4(t)=0,975; P5(t)=0,985. Необходимо определить вероятность безотказной работы прибора.
- **Задача 5.** Система состоит из пяти приборов, среднее время безотказной работы которых равно: mt1=83 час; mt2=220 час; mt3=280 час; mt4=400 час; mt5=700 час. Для приборов справедлив экспоненциальный закон надежности. Требуется найти среднее время безотказной работы системы.
- **Задача 6.** Прибор состоит из пяти блоков. Вероятность безотказной работы каждого блока в течение времени t = 50 час равна: P1(50)=0.98; P2(50)=0.99; P3(50)=0.998; P4(50)=0.975; P5(50)=0.985. Справедлив экспоненциальный закон надежности. Требуется найти среднее время безотказной работы прибора.