МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РЯЗАНСКИЙ ГОСУДАРСТВЕННЫЙ РАДИОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ В.Ф. УТКИНА»

КАФЕДРА ЭЛЕКТРОННЫХ ПРИБОРОВ

ОЦЕНОЧНЫЕ МАТЕРИАЛЫ

дисциплины

«Сверхбольшие интегральные схемы»

Фонд оценочных средств — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

При оценивании (определении) результатов освоения дисциплины применяется традиционная система (отлично, хорошо, удовлетворительно, неудовлетворительно).

1. Паспорт фонда оценочных средств по дисциплине

№ п/п	Контролируемые разделы (темы) дисциплины (результаты по разделам)	Код кон- троли- руемой компетен- ции (или её части)	Этап формирования контролируемой компе- тенции (или её части)	Наименование оценочного средства			
Модуль 1							
1	Основные классы СБИС. Алгоритм проектирования цифровых СБИС	ПК-4.1, ПК-4.2	Лекционные занятия обучающихся в течение учебного семестра	экзамен			
2	ПЛИС как компонентная база для разработки цифровых устройств	ПК-4.1, ПК-4.2	Лекционные, практические, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	ответы на контрольные вопросы, отчеты по лабораторным и практическим работам, экзамен			
3	Основные варианты готовых модулей цифровых узлов	ПК-4.1, ПК-4.2	Лекционные, практические, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	ответы на контрольные вопросы, отчеты по лабораторным и практическим работам, экзамен			
4	Реализация в САПР простейших устройств	ПК-4.1, ПК-4.2	Лекционные, практические и самостоятельные занятия обучающихся в течение учебного семестра	ответы на контрольные вопросы, отчеты по практическим работам, экзамен			
5	Устройства синхронизации	ПК-4.1, ПК-4.2	Лекционные, практические, лабораторные и самостоятельные занятия обучающихся в течение учебного семестра	ответы на контрольные вопросы, отчеты по лабораторным и практическим работам,			

				экзамен
6	Устройства памяти	ПК-4.1,	Лекционные, практи-	ответы на кон-
	orponerba namin	ПК-4.2	ческие, лабораторные	трольные вопро-
		1110 1.2	и самостоятельные	сы, отчеты по ла-
			занятия обучающихся	бораторным и
			в течение учебного се-	практическим ра-
			местра	ботам,
			Meerpu	экзамен
7	Архитектура типичных	ПК-4.1,	Лекционные, практи-	ответы на кон-
,	микросхем FPGA	ПК 4.1,	ческие и самостоя-	трольные вопро-
	микрослем 11 б/1	1110-4.2	тельные занятия обу-	сы, отчеты по
			чающихся в течение	практическим ра-
			учебного семестра	ботам,
			ученного семестра	экзамен
8	Конфигурирование	ПК-4.1,	Лекционные и само-	ответы на кон-
O	микросхем	ПК-4.1,	стоятельные занятия	трольные вопро-
	микросхем	1111-4.2	обучающихся в тече-	сы, экзамен
			ние учебного семестра	CBI, SKSalvich
9	Конструктивные и	ПК-4.1,	Лекционные и само-	ответы на кон-
,	технологические аспекты	ПК-4.1,	·	
	применения современных	1110-4.2	стоятельные занятия обучающихся в тече-	трольные вопро- сы, экзамен
	ПЛИС		ние учебного семестра	Cbi, JK3aMCh
	TEME	Модул		
10	Введение. СБИС для	ПК-4.1,	Лекционные и само-	Зачет, ответы на
10	систем сбора и обработки	ПК-4.1,	стоятельные занятия	контрольные во-
	данных	THC 4.2	обучающихся в тече-	просы
	данных		ние учебного семестра	просы
11	СБИС микроконтроллера	ПК-4.1,	Лекционные и само-	Зачет, ответы на
11	семейства MCS-51.	ПК 4.1,	стоятельные занятия	контрольные во-
	CEMERCIBA WICS 31.	THC 4.2	обучающихся в тече-	просы
			ние учебного семестра	просы
12	Периферийные устройства	ПК-4.1,	Лекционные и само-	Зачет, ответы на
12	в СБИС	ПК-4.1,	стоятельные занятия	контрольные во-
	микроконтроллеров	1111-4.2	обучающихся в тече-	просы
	ликроконтроли с ров		ние учебного семестра	просы
13		ПК-4.1,	Лекционные и само-	Зачет, ответы на
1.5	Современные микроконт-	ПК-4.1,	стоятельные занятия	контрольные во-
	роллеры фирмы SiLabs.	111C T.2	обучающихся в тече-	просы
			ние учебного семестра	iipoobi
14	СБИС	ПК-4.1,	Лекционные и само-	Зачет, ответы на
17	микропроцессорной	ПК-4.1,	стоятельные занятия	контрольные во-
	системы сбора и	111C T.2	обучающихся в тече-	просы
	обработки данных		ние учебного семестра	inpoobi
	ADuC812		inic y recitor o contect pa	
15	Интегрированные среды	ПК-4.1,	Лекционные и само-	Зачет, ответы на
1.5	программирования и	ПК-4.1,	стоятельные занятия	контрольные во-
	отлад-ки MCStudio,	1110 7.2	обучающихся в тече-	просы
	KeilµVision, Proteus.		ние учебного семестра	iipoon
16	Последовательные	ПК-4.1,	Лекционные и само-	Зачет, ответы на
10	интерфейсы RS232 и SPI	ПК-4.1,	стоятельные занятия	контрольные во-
	в СБИС	1111-7.4	обучающихся в тече-	просы
	p CDHC		обучающился в тече-	просы

микроконтроллеров.	ние учебного семестра	

2 Формы текущего контроля

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины, организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся: на занятиях, по результатам выполнения обучающимися индивидуальных заданий, проверки качества конспектов лекций и иных материалов.

Текущий контроль по дисциплине проводится в виде проверки заданий, выполняемых самостоятельно и на лабораторных занятиях, а также экспресс – опросов и заданий по лекционным материалам и лабораторным работам.

3 Формы промежуточного контроля

Формой промежуточного контроля по дисциплине является экзамен (модуль1) и зачет (модуль 2). К экзамену и зачету допускаются обучающиеся, полностью выполнившие все виды учебной работы, предусмотренные учебным планом и настоящей программой.

4 Критерии оценки компетенций обучающихся и шкалы оценивания

Оценка степени формирования контролируемых компетенций у обучающихся на различных этапах их формирования проводится преподавателем во время лекций, консультаций и лабораторных занятий по шкале оценок «зачтено» — «не зачтено». Текущий контроль по дисциплине проводится в виде проверки заданий, выполняемых самостоятельно, и на лабораторных занятиях, а также экспресс — опросов и заданий по лекционным материалам и лабораторным работам. Формирование у обучающихся во время обучения в семестре указанных выше компетенций на этапах лабораторных занятий и самостоятельной работы оценивается по критериям шкалы оценок - «зачтено» — «не зачтено». Освоение материала дисциплины и достаточно высокая степень формирования контролируемых компетенций обучающегося (эффективное и своевременное выполнение всех видов учебной работы, предусмотренных учебным планом и настоящей программой) служат основанием для допуска обучающегося к этапу промежуточной аттестации - экзамену.

Целью проведения промежуточной аттестации является проверка общепрофессиональных и профессиональных компетенций, приобретенных студентом при изучении дисциплины.

Уровень теоретической подготовки студента определяется составом и степенью формирования приобретенных компетенций, усвоенных теоретических знаний и методов, а также умением осознанно, эффективно применять их при решении задач целенаправленного применения различных групп материалов в электронной технике.

Экзамен организуется и осуществляется, как правило, в форме собеседования. Средством, определяющим содержание собеседования студента с экзаменатором, является утвержденный экзаменационный билет, содержание которого определяется ОПОП и рабочей программой предмета. Экзаменационный билет включает в себя, как правило, два вопроса относящихся к теоретическим разделам дисциплины.

Оценке на заключительной стадии экзамена подвергаются устные ответы экзаменующегося на вопросы экзаменационного билета, а также дополнительные вопросы экзаменатора.

Применяются следующие критерии оценивания компетенций (результатов): -уровень усвоения материала, предусмотренного программой;

- -умение анализировать материал, устанавливать причинно-следственные связи;
- полнота, аргументированность, убежденность ответов на вопросы;
- -качество ответа (общая композиция, логичность, убежденность, общая эрудиция);
- -использование дополнительной литературы при подготовке к этапу промежуточной аттестации.

Применяется четырехбальная шкала оценок: "отлично", "хорошо", "удовлетворительно", "неудовлетворительно", что соответствует шкале "компетенции студента полностью соответствуют требованиям $\Phi \Gamma OC$ BO", "компетенции студента соответствуют требованиям $\Phi \Gamma OC$ BO", "компетенции студента в основном соответствуют требованиям $\Phi \Gamma OC$ BO", "компетенции студента не соответствуют требованиям $\Phi \Gamma OC$ BO".

К оценке уровня знаний и практических умений и навыков рекомендуется предъявлять следующие общие требования.

«Отлично»:

глубокие и твердые знания программного материала программы дисциплины, понимание сущности и взаимосвязи рассматриваемых явлений (процессов);

полные, четкие, логически последовательные, правильные ответы на поставленные вопросы; умение выделять главное и делать выводы.

«Хорошо»:

достаточно полные и твёрдые знания программного материала дисциплины, правильное понимание сущности и взаимосвязи рассматриваемых явлений (процессов);

последовательные, правильные, конкретные, без существенных неточностей ответы на поставленные вопросы, свободное устранение замечаний о недостаточно полном освещении отдельных положений при постановке дополнительных вопросов.

«Удовлетворительно»:

знание основного программного материала дисциплины, понимание сущности и взаимосвязи основных рассматриваемых явлений (процессов):

понимание сущности обсуждаемых вопросов, правильные, без грубых ошибок ответы на поставленные вопросы, несущественные ошибки в ответах на дополнительные вопросы.

«Неудовлетворительно»:

отсутствие знаний значительной части программного материала дисциплины; неправильный ответ хотя бы на один из вопросов, существенные и грубые ошибки в ответах на дополнительные вопросы, недопонимание сущности излагаемых вопросов, неумение применять теоретические знания при решении практических задач, отсутствие навыков в обосновании выдвигаемых предложений и принимаемых решений.

При двух вопросах в билете общая оценка выставляется следующим образом: «отлично», если все оценки «отлично» или одна из них «хорошо»; «хорошо», если не более одной оценки «удовлетворительно»; «удовлетворительно», если две оценки «удовлетворительно»; «неудовлетворительно», если одна оценка «неудовлетворительно», а вторая не выше чем «удовлетворительно» или две оценки «неудовлетворительно».

5 Типовые контрольные вопросы по дисциплине «Сверхбольшие интегральные схемы» Модуль 1

- 1. Основные классы СБИС. Заказные ИС (ASIC), универсальные СБИС (MCU, DSP), ПЛИС (FPGA).
- 2. Общий алгоритм проектирования СБИС. Особенности проектирования ASIC в отечественных условиях. Системные инструменты проектирования.
- 3. Место ПЛИС среди компонентов для разработки цифровых устройств. Источники информации, необходимые разработчику цифровых устройств на ПЛИС. Средства аппаратной отладки разработанных устройств.

- 4. Основные библиотеки САПР Quartus II. Примитивы логических функций. Примитивы триггеров.
- 5. Основные библиотеки САПР Quartus II. Примитивы входных, выходных и двунаправленных портов. Буфер с третьим состоянием tri.
- 6. Применение буферов для конструирования двунаправленных шин. Модули микросхем 74 серии. Основные разделы библиотеки цифровых узлов мастера конфигурирования параметризированных модулей. Принципы функционирования регистра сдвига.
- 7. Принципы функционирования регистра сдвига. Основные конфигурируемые параметры регистра сдвига lpm shiftreg.
- 8. Конструкция, варианты функционирования и конфигурируемые параметры двоичного счетчика. Последовательное соединение (каскадирование) двоичных счетчиков.
- 9. Назначение и возможности параметризированного модуля параллельного регистра lpm ff.
- 10. Принципы функционирования устройств формирования синхроимпульсов pll. Основные параметры входных сигналов модуля alt pll.
- 11. Основные режимы работы модуля alt_pll: нормальный, режим синхронизации с источником и режим нулевой задержки. Дополнительные управляющие входы модуля alt pll.
- 12. Настройка параметров выходных синхросигналов модуля alt_pll. Основные возможности модуля altclkctrl. Пример организации средств синхронизации с проекте. Двухфазная синхронизация.
- 13. Принципы функционирования устройств памяти. Виды памяти в цифровых устройствах. Однопортовая память ROM и ее конфигурирование.
- 14. Двухпортовая память ROM, особенности. Организация процессов чтения памяти ROM. Память RAM, принципиальные отличия от конфигурирования памяти ROM.
- 15. Память с заранее предусмотренным способом доступа (LIFO и FIFO). Схема функционирования буфера FIFO с разными скоростями записи и чтения. Конфигурирование модуля буфера FIFO с двухчастотной синхронизацией.
- 16. Основные компоненты микросхем семейства Cyclone IV. Функциональная схема логического элемента микросхем семейства Cyclone IV. Арифметический режим работы логического элемента. Нормальный режим работы логического элемента.
- 17. Основные виды сигнальных связей в логическом блоке. Система синхронизации логических элементов логического блока. Система горизонтальных межблочных соединительных линий. Система вертикальных межблочных соединительных линий.
- 18. Взаимодействие различных уровней иерархии сигнальных связей. Параметры аппаратных модулей памяти микросхем семейства Cyclone IV. Встроенные блоки умножителей микросхем семейства Cyclone IV.

Модуль 2

- 1. Назначение СБИС микроконтроллера в системах сбора систем сбора и обработки данных
 - 2. Какова цель нормировки сигналов датчиков?
 - 3. Статистическая обработка данных.
 - 4. Структурная схема СБИС микроконтроллера семейства MCS-51.
 - 5. Синхронизация микроконтроллера. Выбор частоты синхронизации.
 - 6. Способы адресации данных в микроконтроллере семейства MCS-51.
 - 7. Система команд в микроконтроллере семейства MCS-51.
 - 8. Стартовый адрес и расположение векторов прерываний в памяти программ.
 - 9. Страничная адресация памяти данных.
 - 10. Альтернативные функции линий портов микроконтроллера семейства MCS-51.

- 11. Нагрузочная способность линий портов микроконтроллера семейства MCS-51.
- 12. Особенности работы порта Р0 микроконтроллера семейства MCS-51.
- 13. Система прерываний микроконтроллера семейства MCS-51.
- 14. Управление системой прерываний.
- 15. Прерывание по уровню и фронту.
- 16. Состав периферийных устройств на кристалле СБИС микроконтроллеров.
- 17. АЦП последовательного приближения.
- 18. Сигма-дельта АЦП.
- 19. Функциональные возможности таймеров-счётчиков.
- 20. Программируемая счётная матрица (РСА).
- 21. Состав периферийных устройств микроконтроллеров фирмы SiLabs.
- 22. Особенности высокопроизводительного ядра микроконтроллеров фирмы SiLabs.
- 23. Назначение цифрового коммутатора (CROSSBAR) микроконтроллеров фирмы Si-Labs.
- 24. Архитектура и основные характеристики микропроцессорной системы сбора и обработки данных ADuC812.
 - 25. Назначение режима АЦП для прямого доступа к памяти данных в ADuC812.
 - 26. Управление блоком АЦ микроконтроллера в ADuC812.
 - 27. Возможности интегрированной среды программирования MCSudio.
 - 28. Возможности интегрированной среды программирования KeilµVision.
 - 29. Возможности интегрированной среды программирования Proteus.
 - 30. Временные диаграммы работы последовательного порта в асинхронном режиме.
 - 31. Сравнение синхронного и асинхронных режимов работы последовательного порта.
- 32. Как подключить последовательный порт микроконтроллера к линии для обмена данными с компьютером.
 - 33. Блок-схема организации обмена по интерфейсу SPI.
 - 34. Протокол обмена по шине SPI.

6 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

В качестве методических материалов, определяющих процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций у обучающихся, используются перечни контрольных вопросов, приведенных в методических указаниях к лабораторным и самостоятельным занятиям по дисциплине «Основы проектирования электронной компонентной базы.

Кроме того, в лаборатории, где проводятся лабораторные работы, на первом занятии студентам подробно излагаются и в дальнейшем рекомендуются для постоянного применения специальные методические материалы, регламентирующие порядок проведения лабораторных работ, оформления и защиты отчетов, порядок и критерии оценки письменных и устных отчетов обучающихся по дисциплине (или ее части). К выполнению лабораторной работы не допускаются студенты, не оформившие отчеты по лабораторным работам или не защитившие отчетов по двум работам.

Методические требования к оформлению отчетов по лабораторным работам

Отчет по лабораторной работе должен содержать следующие элементы:

- номер, название и цель работы;
- чертеж принципиальной электрической схемы, выполненный карандашом по линейке с соблюдением требований ЕСКД;
- осциллограммы входных и выходных сигналов моделируемого устройства;

При выполнении лабораторной работы каждому студенту необходимо иметь полностью оформленный отчет по ранее выполненной работе и отчет по выполняемой работе, содержащий все перечисленные элементы