ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ «ЭЛЕКТРИЧЕСКИЕ ПРИВОДЫ МЕХАТРОННЫХ И ПРОМЫШЛЕННЫХ УСТРОЙСТВ»

Фонд оценочных средств — это совокупность учебно-методических материалов (контрольных заданий, описаний форм и процедур), предназначенных для оценки качества освоения обучающимися данной дисциплины как части основной образовательной программы.

Цель – оценить соответствие знаний, умений и уровня приобретенных компетенций, обучающихся целям и требованиям основной образовательной программы в ходе проведения текущего контроля и промежуточной аттестации.

Основная задача — обеспечить оценку уровня сформированности общекультурных и профессиональных компетенций, приобретаемых обучающимся в соответствии с этими требованиями.

Контроль знаний обучающихся проводится в форме текущего контроля и промежуточной аттестации.

Текущий контроль успеваемости проводится с целью определения степени усвоения учебного материала, своевременного выявления и устранения недостатков в подготовке обучающихся и принятия необходимых мер по совершенствованию методики преподавания учебной дисциплины (модуля), организации работы обучающихся в ходе учебных занятий и оказания им индивидуальной помощи.

К контролю текущей успеваемости относятся проверка знаний, умений и навыков обучающихся: на занятиях; по результатам выполнения контрольной работы; по результатам выполнения обучающимися индивидуальных заданий; по результатам проверки качества конспектов лекций и иных материалов. При оценивании (определении) результатов освоения дисциплины применяется традиционная система (отлично, хорошо, удовлетворительно, неудовлетворительно).

В качестве оценочных средств на протяжении семестра используется компьютерное тестирование.

По итогам курса обучающиеся сдают зачет. Форма проведения зачета — устный ответ, по утвержденным билетам, сформулированным с учетом содержания учебной дисциплины. В билет включается два теоретических вопроса по темам курса.

При оценивании (определении) результатов освоения дисциплины применяется традиционная система (зачет, незачет). Оценка (незачет) выставляется в случае, если студент не выполнил в срок, предусмотренный учебным графиком, расчетные задания, контрольные работы, курсовую работу.

Паспорт фонда оценочных средств по дисциплине

№	Контролируемые разделы (темы)	Код контролируемой	Наименован
п/п	дисциплины	компетенции	ие
	(результаты по разделам)	(или её части)	оценочного
			средства

1.	Введение. Основные понятия мехатроники. Классификация исполнительных механизмов мехатронных и промышленных устройств. Структурная схема и состав электропривода.	ПК-1.1-В	зачет
2.	Принцип работы электропривода. Электрические и механические параметры электропривода.	ПК-1.1-3 ПК-1.1-У ПК-2.2-3	зачет
3.	Устройство и принцип работы различных типов электродвигателей.	ПК-1.1-3 ПК-1.1-У ПК-1.2-3 ПК-1.2-У ПК-1.2-В	зачет
4.	Обратная связь и контроль в исполнительных и промышленных устройствах. Датчики.	ПК-1.1-3 ПК-1.1-У ПК-1.2-3 ПК-1.2-У ПК-1.2-В	зачет

Вопросы к зачёту по дисциплине

Вопросы к зачету:

- 1. Мехатроника. Основные понятия. Мехатронное устройство . Мехатронный модуль . Мехатронная машина. Классификация исполнительных механизмов
- 2. Структурная схема и состав электропривода
- 3. Принцип работы электропривода
- 4. Механическая характеристика электрического двигателя. Установленная мощность электропривода
- 5. Механика электропривода
- 6. Составные части электрического двигателя. Основные технические параметры электрического двигателя

- 7. Синхронные электроприводы. Конструкция синхронного двигателя. Преимущества и недостатки синхронных электродвигателей
- 8. Требования к электроприводу. Тенденции развития электроприводов
- 9. Асинхронный электродвигатель. Вывод механической характеристики асинхронного электродвигателя.
- 10. Асинхронный электродвигатель. Вид механической характеристики асинхронного двигателя. Подключение обмоток статора асинхронных электродвигателей
- 11. Асинхронный электродвигатель. Типы асинхронных двигателей. Конструкция асинхронного двигателя
- 12. Синхронные электроприводы. Угловая скорость синхронного двигателя. Преимущества и недостатки синхронных электродвигателей
- 13. Вентильный электропривод. Преимущества И недостатки вентильных электродвигателей
- 14. Составные части электрического двигателя. Основные технические параметры электрического двигателя
- 15. Шаговый электродвигатель. Конструкция и принцип работы шагового двигателя
- 16. Шаговый электродвигатель. Схемы управления шаговыми двигателями. Преимущества и недостатки шаговых электродвигателей
- 17. Шаговый Реактивный шаговый двигатель. Шаговый электродвигатель. двигатель
- 18. Сервопривод структура, определение и принцип работы
- 19. Датчики сервопривода датчики линейных перемещений

20. Датчики хол	ла. Линейные датчики холла. Применение	линейных датчиков холла.			
Цифровые да	атчики холла				
21. Датчики на с	. Датчики на основе «сухого контакта». Индуктивные датчики				
Составил:					
к.т.н., доценты	кафедры				
«Промышленна	я электроника»Д.Е	3. Суворов			
Зав. кафедрой П	\mathcal{J}_{π}				
д.т.н.		С.А. Круглов			
		Оператор ЭДО ООО "Компания "Тензор"			
ДОКУМЕНТ ПО	ДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ				
ПОДПИСАНО	ФГБОУ ВО "РГРТУ", РГРТУ, Круглов Сергей Александрович, Заведующий кафедрой ПЭЛ	01.09.25 19:50 (MSK) Простая под			